日本語

Michigan State University uses laser pulses to impact gold nanoparticles for crystal growth

444
2025-10-16 10:24:49
翻訳を見る

To make crystals suitable for use as optoelectronic materials, the key is to precisely control the crystallization, but this control is difficult.

Producing lead halide perovskites, promising components for next-generation solar cells and photodetectors, has proven particularly challenging, with slow growth rates and uncontrolled nucleation being common issues.

A project at Michigan State University (MSU) has now developed a new way to stimulate crystal growth using laser pulses, which could accelerate the development of these advanced next-gen technologies.

Described in ACS Nano, the seed-free plasmonic heating-driven approach could mean that "the traditionally tricky crystal-growing process is turned on its head."

 

 

Growth potential: controlled crystallization


"With this method, we can essentially grow crystals at precise locations and times," said Md Shahjahan from MSU. "It's like having a front-row seat to watch the very first moments of a crystal's life under a microscope, only here we can also steer how it develops."

The technique leverages plasmonic heating in gold nanoparticles, and the ability of a laser to precisely control the temperature in the immediate vicinity of a nanoparticle's surface. This localized thermal gradient can influence supersaturation conditions in specific areas, and effectively control nucleation and growth.

This offers researchers the ability to "draw" crystals with levels of control that could transform fields ranging from clean energy to quantum technologies, said the project. It could also help expand the understanding of how crystals form, providing "a unique opportunity for real-time visualization of the crystallization process with sub-millisecond resolution using high-speed microscopy."

Optical properties maintained

In trials using methyl-ammonium lead bromide (MAPbBr3) perovskites, the team employed a 660-nanometer laser, tuned to match the localized surface plasmon resonance (LSPR) behavior of the gold nanoparticles.

Unlike many other solutes, MAPbBr3 exhibits a decrease in solubility with rising temperature, so the laser's localized heating causes the precursor solution to become supersaturated near the surface, driving the formation of stable crystal nucleii which then act as seeds for further growth.

"We found that in a narrow range around 60 mW laser power, there is an optimal thermal environment at the focal spot, whereby single crystals nucleate and continue to grow steadily," wrote the project in its paper. The crucial optical properties of the resulting crystals were later found to be comparable to naturally grown counterparts.

The project's next steps will include using multiple lasers of different colors to draw even more intricate crystal patterns, and attempting to create entirely new materials that can't be made through conventional methods.

"Now that we can 'draw' crystals with lasers, the next step is to make larger and more complex patterns, and to test how these crystals perform in real devices," said Elad Harel from the MSU DeepSpec Lab. "We're just beginning to scratch the surface of what’s possible."

Source: optics.org

関連のおすすめ
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    翻訳を見る
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    翻訳を見る
  • Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

    Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal o...

    2023-09-15
    翻訳を見る
  • Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

    Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.Ultra fast laser proc...

    2024-08-06
    翻訳を見る
  • Panacol showcases a new optical grade adhesive on Photonics West

    Panacol will showcase new optical grade resins and adhesives for embossing and optical bonding applications at the SPIE Photonics West exhibition held in San Francisco, California, USA from January 30 to February 1, 2024.These new adhesives can be used for sensors in lightweight carpets, smart devices, and wearable devices in the automotive industry, or for generating structured light in projector...

    2023-12-12
    翻訳を見る