日本語

Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

602
2024-08-06 14:36:08
翻訳を見る

Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.

Ultra fast laser processing technology provides a wide range of application opportunities in micro nano manufacturing, nanotechnology, biotechnology, energy science, photonics, and other fields due to its controllable processing accuracy, diverse processing capabilities, and extensive material adaptability. The processing capability and application of ultrafast lasers still need further exploration. In the field of material processing, controlling the atomic scale structure of nanomaterials is challenging. There are complex effects in ultrafast laser surface/interface processing, making it difficult to modulate the nanostructures and properties of the surface/interface as needed. In the process of ultrafast laser manufacturing of micro functional devices, the processing capability urgently needs to be improved. Here, researchers reviewed the research progress of ultrafast laser micro nano manufacturing in areas such as material processing, surface/interface control, and micro functional device manufacturing. Several useful ultrafast laser processing methods and applications in these fields were introduced. Ultra fast laser processing technology has various processing effects and capabilities, and has shown application value in multiple fields from science to industry.

Figure 1 Overview of ultrafast laser micro nano processing structure schematic diagram


Figure 2 Reshaping of Metal Nanomaterials Induced by Ultrafast Laser


Figure 3 Ultrafast laser-induced ablation of metal nanomaterials


Figure 4 Ultra fast laser plasma nanomachining of multifunctional structures with photoresponsive properties


Figure 5 Formation of surface dislocation layer under femtosecond laser irradiation


Figure 6 Laser Induced Coffee Ring Structure for Color Printing


Figure 7 Strong metal carrier interaction induced by ultrafast laser


Figure 8 Ultrafast laser induces bubble enhanced fluorescence in dye solution


Figure 9 Optical Metasurfaces Prepared by Near Field Enhanced Ultrafast Laser Processing Method


Figure 10 Using a multi beam ultrafast laser to fabricate photonic crystals and subwavelength gratings


Figure 11 Preparation of Nanogap Graphene Supercapacitors by Ultrafast Laser Bessel Beam Processing


Figure 12 Ultrafast Laser Induced Carbonization from Carbonation Points


Figure 13 Preparation of hybrid supercapacitors using MoCl5 assisted carbonization method based on ultrafast laser

This article reviews the research progress of ultrafast laser micro nano processing technology in material processing, surface/interface control, and functional device manufacturing. These research results demonstrate the extensive material processing capabilities of ultrafast lasers, from altering the internal atomic structure of nanomaterials to manipulating the properties of material surfaces/interfaces. By adjusting the energy deposition of ultrafast laser processing, different processing effects on nanomaterials can be achieved, including reshaping, ablation, and interconnection. Ultrafast lasers provide an effective method to control the properties of material surfaces/interfaces, thereby achieving the construction of surface structures, impact strengthening, and strong metal carrier interactions. In addition, this technology can also produce micro functional devices, including photonic crystal devices, optical components, and electronic devices. These advances demonstrate the potential of ultrafast laser processing in both scientific and industrial fields. Ultrafast laser processing technology is still rapidly developing and will play a more important role in micro nano manufacturing in the future, bringing changes to multiple application fields.

Source: Yangtze River Delta Laser Alliance

関連のおすすめ
  • Linear Pluggable Optical Device Alliance Definition Linear Pluggable Optical Device Specification

    A group of network, semiconductor, and optical companies formed the LPO MSA to develop the network equipment and optical module specifications required to implement a wide ecosystem of interoperable LPO solutions.These specifications address the industry challenges of reducing power consumption, cost, and latency while improving the reliability of high-speed optical interconnections.Accelink, AMD...

    2024-03-26
    翻訳を見る
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    翻訳を見る
  • The wide application of TORNOS mind machine in diversified industrial fields

    TORNOS walking machine, also known as walking CNC lathe or spindle box mobile CNC automatic lathe, occupies an important position in the field of precision manufacturing due to its excellent performance and wide application areas. This machine tool not only integrates mechanical and electrical technologies, but also becomes an indispensable processing equipment in many industrial fields due to its...

    2024-07-24
    翻訳を見る
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    翻訳を見る
  • From Fiction to Reality: Laser Cutting Technology Has Entered the Shipbuilding Industry

    Laser cutting is a type of metal processing. In industry, there are three main cutting methods: mechanical cutting, thermal cutting, and a set of high-precision cutting methods. Laser technology belongs to the third category. The cutting in this method occurs due to the influence of the laser beam on the product. In fact, it is the molten metal produced by rapid pulse point melting and then blowin...

    2023-12-28
    翻訳を見る