日本語

Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

422
2024-03-18 13:56:19
翻訳を見る

Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.

John Hall's research focuses on understanding and manipulating stable lasers, laying the technical foundation for measuring small fractional distance changes caused by gravitational waves passing through them. This work on laser arrays earned him the 2005 Nobel Prize in Physics.

On this basis, JILA and NIST academicians Jun Ye and their team embarked on an ambitious journey to expand the boundaries of precision measurement. They focus on improving the Pound Reverse Hall (PDH) method, a specialized technique developed by RV Pound, Ronald Drever, and Jan Hall, which plays a crucial role in precision optical interferometry and laser frequency stability.

Although the PDH method is crucial for ensuring laser frequency stability, the limitations of residual amplitude modulation (RAM) may affect measurement accuracy. In a recent paper published in Optica, Ye's team, along with JILA electronics staff Ivan Ryger and Hall, proposed a new PDH method. This method reduces RAM to an unprecedented low level, simplifies the system, and enhances robustness.

PDH technology is the foundation of various experiments, from gravitational wave interferometers to optical clocks. Further improvement of this technology can bring progress to many scientific fields.

The PDH method was introduced in 1983 and has become the cornerstone of laser physics, widely used in various experiments. It precisely measures laser frequency or phase fluctuations by introducing special "sidebands" around the main beam (referred to as the "carrier"). Comparing these sidebands with the main carrier helps detect subtle changes in frequency or phase relative to the reference, thereby reducing noise and errors.

Physicists use this technique to detect different environments, such as optical cavities made of mirrors, by "locking" the laser into the cavity. However, noise like RAM can alter the relative offset of the reference beam, thereby affecting stability.

Reducing RAM is crucial for improving the stability of PDH technology and laser measurement. The new method developed by JILA researchers is expected to simplify this task and make significant progress in precision measurement and laser physics.

Source: Laser Net

関連のおすすめ
  • Researchers enhance the signal of perovskite nanosheets

    In the field of optoelectronics, researchers from Busan National University in South Korea and the University of Oxford in the UK have successfully improved the signal amplification ability of CsPbBr3 perovskite nanosheets through innovative patterned waveguide methods, bringing new possibilities for the future of optoelectronics. This breakthrough not only has potential applications in fields suc...

    2024-02-22
    翻訳を見る
  • The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

    The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of sea...

    2023-12-13
    翻訳を見る
  • Leica Cine 1 laser TV with 4K display screen launched with a starting price of $8995

    Photography brand Leica has launched its first 4K movie and television. The Leica Cine 1 laser TV was announced a year later during the I FA 2022 period. This iconic photography brand is shifting some of its focus to projecting perfect images in our living room.featureThe Leica Cine 1 laser TV embodies Leica's philosophy in its camera design. Leica continues to provide precision optical engineerin...

    2023-10-19
    翻訳を見る
  • Scientists develop high-power fiber lasers to power nanosatellites

    The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the...

    2024-01-18
    翻訳を見る
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    翻訳を見る