Italiano

Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

214
2025-03-06 14:05:46
Vedi traduzione

Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology and achieving a perfect combination of high resolution and high efficiency.

Two photon absorption (TPA) is a nonlinear optical phenomenon widely used in three-dimensional fluorescence imaging and nanostructure processing. Traditional TPA technology uses high-intensity focused laser beams to excite fluorescent molecules for three-dimensional fluorescence imaging, or induces local chemical cross-linking reactions for three-dimensional nanoprocessing. However, high-intensity focused laser beams not only cause unnecessary high-order nonlinear optical effects, leading to problems such as phototoxicity, photobleaching, and micro explosions, but also limit their resolution and efficiency improvement.

Based on the existing research paradigm of two-photon effects based on wave optics theory, the research team started from the basic principles of quantum theory and constructed a quantum image of the two-photon absorption process using optical quantum properties such as wave particle duality, superposition state, uncertainty principle, and random probability statistics. They established a spatiotemporal quantum model of two-photon absorption under few photon irradiation and elucidated the time-dependent quantum mechanism of two-photon absorption. The simulation results show that under highly focused few photon femtosecond laser pulse irradiation, the probability of two-photon absorption exhibits a completely different distribution state from the traditional Gaussian distribution. Under ultra-low optical flow density, the probability of two-photon absorption can be compressed to the nanometer scale, proving the feasibility of using the quantum mechanism of two-photon absorption to break through the diffraction limit of traditional wave optics theory.


Schematic diagram of time-dependent quantum mechanism of two-photon absorption


The research team utilized digital optical projection nanolithography (TPDOPL) technology, combined with low photon irradiation technology, to achieve a minimum feature size of 26 nanometers by precisely controlling photon flux and pulse accumulation times. This size is only one twentieth of the wavelength, far below the resolution limit of traditional optical exposure techniques. Compared with traditional point by point laser direct writing technology, TPDOPL technology has increased throughput by 5 orders of magnitude and can achieve large-area nanostructure manufacturing in a short period of time. In addition, the research team also proposed an in-situ multiple exposure technique (iDME), which can achieve high-density pattern manufacturing without violating the optical diffraction limit by loading multiple patterns on the DMD and alternately exposing them. For example, through two alternating exposures, the research team successfully manufactured a dense line array with a period of 210 nanometers (equivalent to 0.41 times the wavelength), which is far below the limit that traditional optical exposure techniques can achieve.


Schematic diagram and simulation and experimental processing results of two-photon digital optical projection lithography system


This research work re examines the two-photon absorption effect from the perspective of fundamental photon properties, providing new ideas for ultra weak light nonlinear optics and enormous potential for the development of new principle based super diffraction optical technology and its cutting-edge applications in related fields. In the field of microelectronics, this technology can be used for the preparation of highly integrated chips; In the field of optics, it can be used for the manufacturing of high-performance optical waveguides and micro ring resonators; In the field of biomedical research, this technology can produce microfluidic chips for cell culture and virus detection, providing new tools for biomedical research. The research team pointed out that the success of two-photon absorption (fpTPA) technology under low photon irradiation has brought new hope to the fields of nanomanufacturing and nanoimaging. Through further optimization, this technology is expected to be used for nanofabrication below 10 nanometers and even single-molecule imaging.

This research has received support from national key research and development programs, the "Guangdong Special Support Program" for leading talents in scientific and technological innovation, national natural science foundation projects, Guangzhou Key Field Research and Development Program, Guangdong Provincial Natural Science Foundation, and other projects.

Paper information:
Zi-Xin Liang, Yuan-Yuan Zhao, Jing-Tao Chen, Xian-Zi Dong, Feng Jin, Mei-Ling Zheng, Xuan-Ming Duan. Two-photon absorption under few-photon irradiation for optical nanoprinting. Nature Communications 16, 2086 (2025). 

Source: opticsky

Raccomandazioni correlate
  • It is expected that the global industrial laser system market size will reach 32.2 billion US dollars by 2028, and the Asia Pacific region's investment share in laser technology will continue to rise

    According to a latest overseas market research report, it is expected that the global industrial laser system market size will reach approximately 32.2 billion US dollars by 2028, with a compound annual growth rate of 8.3% from 2023 to 2028.The future prospects of the global industrial laser system market are broad, with opportunities in numerous fields such as semiconductors and electronics, auto...

    2023-08-10
    Vedi traduzione
  • TriLite has partnered with AMS OSram to develop AR smart glasses displays

    TriLite has announced a technical collaboration with ams OSRAM, a global leader in smart sensors and transmitters. Ams Osram will supply its sub-assembled RGB laser diode to "light up" TriLite's Trixel® 3 laser beam scanner (LBS), the world's smallest AR smart glasses projection display.The award-winning Trixel® 3 LBS offers breakthrough compactness and light weight, as well as a bright an...

    2023-09-06
    Vedi traduzione
  • NASA Completely Transforms Laser Communication and Space Weather Research

    NASA is a pioneer in space research, once again attracting the attention of the world with fascinating insights. In a recent press release, NASA announced plans to test revolutionary laser communication systems and study the interaction between Earth and space weather.A Great Leap in Space Communication: ILLUMA-TThe SpaceX 29 mission, scheduled for November 5th, will conduct research and technical...

    2023-10-23
    Vedi traduzione
  • The carbon dioxide laser market is expected to reach 7.1 billion US dollars by 2033

    The carbon dioxide laser market will show significant elasticity and sustained growth in the next decade, with a compound annual growth rate of 3.6% expected from 2023 to 2033.This impressive prediction indicates the persistent demand and expanding application of carbon dioxide lasers in various industries.By the end of 2033, the market is expected to reach a significant valuation of $7.1 billion,...

    2023-10-27
    Vedi traduzione
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    Vedi traduzione