Italiano

Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

620
2024-03-02 11:13:23
Vedi traduzione

Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navigation, and large bandwidth data processing.

In a new paper published in Nature Photonics, researchers reported improvements in the stable generation of multi wavelength signals using micro integrated comb laser systems. This study is a collaboration between the German Center for Electronic Synchrotron Radiation (DESY Hamburg) and a Swiss startup called Enlightra, which focuses on developing efficient multi wavelength lasers for high-capacity data transmission and optical computing. The author states that light sources are a key technology that drives optical communication to reach the data rate required by artificial intelligence.

This paper titled "Synthetic reflection self injection locked microcombs" showcases a special design. By introducing a customized nanostructure into the ring resonator in a micro comb system, the integrated comb laser can emit laser radiation in a stable and efficient manner. This novel design can improve the performance of comb lasers, enabling them to play a better role in fields such as optical communication and optical computing.

This study demonstrates a microcavity resonator with programmable synthetic reflection, providing customized injection feedback for driving lasers. This synthetic reflection enables them to achieve stable and definite working states of self injection locking micro combs. This is in stark contrast to the traditional self injection locking based on random defect scattering.

Dr. John Jost, one of the authors, said, "This is stability achieved through design. In addition to stability, we have also increased conversion efficiency by more than 15 times."

As part of the research, the author conducted various tests using different nanostructured ring resonators and docked semiconductor laser diodes with photonic chips. The resonator is designed using a photonic crystal micro ring structure based on a silicon nitride platform and prepared through ultraviolet lithography technology. The study was only demonstrated in the C-band, but the researchers stated that it performed equally well in all communication bands.

The comb laser proposed by this research institute can be widely produced and integrated with other photonic integrated circuits. Therefore, it can support fast optical input/output units or optical programmable gate arrays, which is of great significance for data intensive applications such as generative artificial intelligence and novel non integrated computer and memory architectures.

According to researchers, this is the first time that back reflection technology has been used to achieve stable and efficient generation of laser combs. With this stable, efficient, and easy to manufacture new design, laser micro combs are expected to make rapid progress in applications such as portable sensors, autonomous navigation, or extremely wide bandwidth data processing.

Source: Sohu

Raccomandazioni correlate
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    Vedi traduzione
  • 253 million US dollars! This Canadian medical fiber optic sensor manufacturer will be acquired

    Recently, Haemantics Corporation, which focuses on providing innovative medical solutions with proprietary optical technology, announced that the company has reached a final agreement. According to the agreement, Haemonics will acquire all outstanding shares of Canadian fiber optic sensor manufacturer OpSens for CAD 2.90 per share.This is an all cash transaction with a fully diluted equity value o...

    2023-10-18
    Vedi traduzione
  • Process practice of blue light semiconductor laser cladding copper on copper

    Laser Cladding, also known as laser cladding or laser cladding, is a method of adding cladding material to the surface of the substrate and using a high-energy density laser beam to melt it together with the thin layer on the surface of the substrate. It forms a metallurgical bonded additive cladding layer on the surface of the substrate, which can be used for surface strengthening and defect repa...

    2024-04-09
    Vedi traduzione
  • The 2025 Munich Laser Exhibition has come to a successful conclusion

    Around 1,400 exhibitors and 44,000 visitors created “optimistic atmosphere”, says Messe München.Laser World of Photonics 2025 in Munich, Germany, came to a close on Friday, having set a new record for number of exhibitors and new innovations, said the organizer Messe München. Last week, 1,398 exhibitors from 41 countries presented the full spectrum of photonic technologies to around 44,000 visitor...

    06-30
    Vedi traduzione
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    Vedi traduzione