Italiano

Nat. Commun.: Two color orthogonal polarized organic light-emitting diode

523
2024-02-29 14:25:32
Vedi traduzione

In recent years, linearly polarized organic light-emitting diodes have greatly enriched the application scenarios of polarization optics and optoelectronics industries. The low-cost and large-area preparation of linearly polarized organic light-emitting diodes with high polarization, strong directional emission, narrow bandwidth, and multi-color adjustability is an important challenge in the current field, targeting 3D display, augmented reality/virtual reality, high-density data storage, and optical encryption.

Recently, a team led by Professor Liang Ningning and Professor Zhai Tianrui from Beijing Institute of Technology proposed a high-performance dual color orthogonal polarized organic light-emitting diode based on laser dual beam interference lithography and vacuum thermal evaporation method. This method successfully obtained a large-area dielectric/metal nano one-dimensional grating of 3 × 3 cm2. Through precise theoretical simulation and device design optimization, the orthogonal emission of high-intensity sky blue light transverse electric mode waveguide mode and green transverse magnetic mode waveguide mode of organic light-emitting diodes was achieved. Its excellent polarization extinction ratio has met commercial requirements; An organic light-emitting diode with dual color orthogonal polarization emission that combines high polarization extinction ratio, high external quantum efficiency, and directional emission has been achieved. The related achievements were published in the journal Nature Communications under the title "Dual color emissive OLED with orthogonal polarization modes".

To ensure the conductivity and transparency of the metal electrodes, researchers effectively determined the types and thicknesses of dielectrics and metal electrodes using the finite difference time domain method. A 100 nm MgF2 (100 nm)/25-nm Ag one-dimensional grating electrode with a period of 300 nm, a groove depth of 80 nm, and a size of 3 × 3cm2 was successfully prepared using laser dual beam interference lithography and vacuum thermal evaporation method, as shown in Figure 1. This work abandons the weak microcavity effect caused by the traditional OLED using transparent ITO as the anode, and forms a Fabry Perot microcavity by introducing a bimetallic electrode with high reflectivity; Combining the finite difference time domain method to achieve the maximum localization of the transverse polarization waveguide mode at a wavelength of 470 nm, as shown in Figures 2a-h. By introducing a one-dimensional grating, the Fabry Perot microcavity is effectively coupled with the grating microcavity to form different responses to transverse electric and transverse magnetic polarization waveguide modes, achieving strong 470 nm wavelength TE light and suppressed 500 nm wavelength TM light orthogonally polarized light emission, as shown in Figure 2i-o. The coupling theory of the coupling cavity is determined.

Figure 1. Design concept and specific preparation process diagram of dielectric/metal nanograting structure.

Figure 2. Simulation results of optical properties of planar OLED and corrugated OLED.

This work achieved the emission of horizontally polarized sky blue light with vertical emission, which has a polarization extinction ratio of 15.8 dB, a suppressed full width at half height of 28 nm, and a small angle emission of ± 30 °. At the same time, it achieved the emission of horizontally polarized green light; The proposed design concept can be extended to full color gamut linear polarization modulation with high extinction ratio and excellent external quantum efficiency, providing a powerful platform for manufacturing low-cost, large-area, and multi polarization multi-color luminescent LP-OLED for 3D display, augmented reality/virtual reality, high-density data storage, and optical encryption. Beijing University of Technology is the sole author of this paper, with Chen Ruixiang, a doctoral student from the School of Physics and Optoelectronic Engineering, as the first author, and Professor Liang Ningning and Professor Zhai Tianrui as co corresponding authors. This study was supported by the National Natural Science Foundation of China.

Figure 3. Performance results of planar OLED and corrugated OLED devices.

Figure 4. Spatial pattern display and development status of corrugated OLED.

Figure 5. Color image encryption application with coordinated control of polarization and color.

Source: Sohu

Raccomandazioni correlate
  • Webasto joins hands with Tongkuai to lead the new trend of electric vehicle technology

    In the process of selecting electric vehicles, the effectiveness of the heating system is often overlooked. However, this system is crucial for providing a warm and comfortable driving environment and removing frost and fog from winter windows. More importantly, it can also improve battery efficiency, as the battery performs best within a specific temperature range.Unlike internal combustion engin...

    2024-06-12
    Vedi traduzione
  • Laser chip manufacturer Shijia Photon will make a profit of 65 million yuan in 2024

    Shijia Photon disclosed its 2024 annual performance forecast on the evening of January 17th, expecting to achieve a revenue of 1.074 billion yuan in 2024, a year-on-year increase of 42.36%; Net profit attributable to the parent company was 65 million yuan, with a loss of 47.55 million yuan in the same period last year; Deducting non net profit is expected to be 48.1 million yuan, with a loss of 66...

    01-21
    Vedi traduzione
  • Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

    Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional ma...

    2024-02-23
    Vedi traduzione
  • Ultrafast laser technology continues to reach new heights

    Ultra short pulse lasers, such as femtosecond lasers, are increasingly becoming easy-to-use plug and play devices suitable for a wide range of industrial and biomedical applications. Fifteen years ago, the volume of these lasers was still very large, requiring daily cleaning of optical components, regular maintenance of cooling water, and continuous optimization of laser parameters. Nowada...

    2023-11-06
    Vedi traduzione
  • GeoCue introduces three new TrueView 3D imaging systems

    Earlier this month, GeoCue, a liDAR mapping hardware and software provider, announced the launch of three new products for its TrueView 3D imaging system. These new systems combine laser scanning and high-resolution imaging, including the TV625, TV680 and TV680LR. All three systems are NDAA-compliant.All three systems are designed to be used in conjunction with drones, and the company note...

    2023-08-04
    Vedi traduzione