Italiano

Chinese researchers enhance perovskite lasers by suppressing energy loss

1052
2025-08-25 10:23:09
Vedi traduzione

Limiting Auger recombination enables “record” quasi-continuous wave laser output.

For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.
Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that makes them difficult and costly to combine with mainstream silicon technology.

All-inorganic perovskite films have emerged as a promising alternative because they can be produced inexpensively, work with many substrate types, and offer strong optical properties. But one major obstacle has stood in the way: at room temperature, it has been difficult to get perovskite lasers to run in continuous or near-continuous modes without quickly losing their charge carriers to an effect known as Auger recombination.

 


Suppressing Auger recombination for high-performance perovskite VCSELs


A research team at Zhejiang University, Hangzhou, China, has demonstrated a simple method to overcome this problem, leading to record-setting performance for perovskite lasers under near-continuous operation.

As reported in Advanced Photonics, their approach uses a volatile ammonium additive during the annealing process of polycrystalline perovskite films. This additive triggers a “phase reconstruction” that removes unwanted low-dimensional phases, reducing channels that accelerate Auger recombination. The result is a pure 3D structure that better preserves the charge carriers needed for lasing, without adding significant optical loss.

‘Auger recombination’

To understand the improvement, the team analyzed how electrons and holes recombine under different pumping conditions. Auger recombination—where energy from a recombining electron-hole pair is given to another carrier instead of emitted as light—becomes especially problematic when the input light is delivered in longer pulses or continuous beams.

In those situations, carrier injection occurs on a timescale similar to or longer than the Auger lifetime, leading to rapid carrier loss and preventing the build-up of population inversion needed for lasing. By suppressing this process, the researchers were able to sustain the carrier densities required for efficient stimulated emission.


High-performance perovskite lasing via phase-reconstruction Auger suppression. Click for info


With their optimized films, the team built a single-mode vertical-cavity surface-emitting laser (VCSEL) that achieved a low lasing threshold of 17.3 μJ/cm2 and an impressive quality factor of 3850 under quasi-continuous nanosecond pumping. This performance marks the best reported to date for a perovskite laser in this regime.

The results point toward a practical route for making high-performance perovskite lasers that could work under true continuous-wave or electrically driven conditions—key milestones for their integration into future photonic chips and potentially flexible or wearable optoelectronic devices.

Source: optics.org

Raccomandazioni correlate
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    Vedi traduzione
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    Vedi traduzione
  • Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the tit...

    2024-06-05
    Vedi traduzione
  • Duke University: Laser imaging holds promise for early detection of risky artworks

    Compared to Impressionist paintings taken 50 years ago, upon closer inspection of Impressionist paintings in museums, you may notice some strange things: some are losing their bright yellow hue.Taking the dramatic sunset in Edward Munch's masterpiece "The Scream" as an example. The once bright orange yellow parts of the sky have faded to off white.Similarly, in his painting "The Joy of Life", Henr...

    2024-05-14
    Vedi traduzione
  • Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

    Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear io...

    2024-06-21
    Vedi traduzione