Italiano

Tunoptix makes breakthrough progress in meta optical platform

736
2025-07-02 10:45:16
Vedi traduzione

Tunoptix, a developer of computational meta-optics, based in Seattle, WA, has made what it calls “a breakthrough in mobile-scale spectral imaging”. The company’s latest meta-optical platform captures high-fidelity spectral signatures across the visible-to-NIR spectrum in a compact form factor smaller than 1 cm3, consuming less than 500 mW, and operating at real-time frame rates.


Tunoptix’s ultra-compact hyperspectral imaging module.


The company stated, “The new technology unlocks entirely new applications for spectral intelligence in smart phones, wearables, robotics, and edge devices.”

Tunoptix previously enabled compact full-color imaging using its meta-optical platform and is now extending this capability to hyperspectral sensing. The module eliminates the need for bulky dispersive optics or mechanical scanning mechanisms.

“Advanced spectral imaging unlocks a largely untapped consumer market estimated at over $10 billion, alongside multi-billion-dollar markets in industrial, healthcare, and defense sectors,” said Naren Yellai, the CEO. “We have overcome long-standing barriers in size, cost, and complexity to make spectral intelligence truly scalable. Our technology enables a new class of devices that can perceive and interpret the world in ways conventional cameras cannot.”

The firm’s meta-optical imaging technology integrates nano-engineered lenses and spectral filters in a compact hardware stack. This end-to-end optics approach encodes spectral information at the point of capture and delivers it directly from hardware, eliminating the need for bulky optics or mechanical scanning. Historically, hyperspectral imaging has been confined to large, expensive lab-based or industrial systems, limiting its commercial potential.

Tunoptix said its platform disrupts this paradigm with a wafer-scale, manufacturable solution that delivers real-time snapshot capture of over 30 distinct spectral channels in the VNIR range with sub-20nm spectral resolution and effective per-channel resolution of ~720×480 pixels.

By bringing spectral imaging to mobile scale, Tunoptix says that its latest system enables new applications in the following areas:

Consumer electronics: skincare, cardiopulmonary monitoring, food quality, oral health, and material sensing on smart phones, wearables, and other devices.
Industrial Automation: Real-time defect detection and material classification in high-throughput manufacturing.
Agriculture & Food Safety: Field-deployable tools for assessing ripeness, spoilage, contamination, and crop monitoring.
Defense & Security: Situational awareness and chemical detection using lightweight systems on drones and autonomous platforms.
Scalability

Tunoptix employs a fabless manufacturing model, leveraging standard CMOS-compatible processes for high-yield, wafer-level fabrication of its meta-optical elements. The company partners with foundries and optomechanical integrators to support scalable production for high volume.

The company’s announcement added, “Future mobile designs will offer higher spatial resolution (greater than 4K), extended SWIR coverage, and application-optimized configurations for wearables, factory vision systems, and defense platforms. [We are] also actively developing extensions for optical and Raman spectroscopy to support mobile chemical and molecular analysis.”

“We are seeing strong interest across multiple verticals, including tier-one OEMs in the consumer electronics space,” said Yellai. “Our goal is to democratize spectral intelligence by making it a core capability of next-generation devices. We’re actively seeking to collaborate with OEMs and system integrators to bring our technology to market at scale.”

Source: optics.org

Raccomandazioni correlate
  • Manz AG officially announces its application for bankruptcy restructuring

    Last month, Manz AG officially announced that the company is about to undergo bankruptcy restructuring. The board of directors of the company believes that due to insufficient liquidity and excessive debt, Manz AG intends to apply for bankruptcy proceedings in accordance with bankruptcy laws. The application is expected to be submitted in the next few days. Manz AG is headquartered in Reutlingen...

    01-07
    Vedi traduzione
  • Lumentum Holdings changes CEO

    On February 3, 2025, Lumentum Holdings has appointed Michael Hurlston as its President, CEO, and Director, effective from February 7. Hurlston replaces Alan Lowe, who has been serving as the company's President and CEO since 2015. Lowe will continue to serve as a member of Lumentum's board of directors and as a consultant to the company.Lumentum is a major supplier of high-speed optical transceive...

    02-06
    Vedi traduzione
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    Vedi traduzione
  • Webasto joins hands with Tongkuai to lead the new trend of electric vehicle technology

    In the process of selecting electric vehicles, the effectiveness of the heating system is often overlooked. However, this system is crucial for providing a warm and comfortable driving environment and removing frost and fog from winter windows. More importantly, it can also improve battery efficiency, as the battery performs best within a specific temperature range.Unlike internal combustion engin...

    2024-06-12
    Vedi traduzione
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    Vedi traduzione