Français

Construction of Advanced New Laser Research Centers in American Universities

480
2024-10-30 11:51:58
Voir la traduction

The ATLAS R&D center is expected to be completed by mid-2026!
A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science Program of the US Department of Energy's Office of Science and has established a $150 million strategic public-private partnership with Marvel Fusion, which will be launched in 2023.

This new building will be called the Advanced Technology Laser Applications and Science (ATLAS) facility. One of the main research focuses of this facility is laser driven fusion as a viable clean energy source.

After completion, the facility will be equipped with an upgraded version of the existing ultra-high power laser developed by CSU, as well as two new lasers provided by Marvel. The ATLAS facility will consist of a set of high-intensity, high repetition rate lasers that can be configured to simultaneously emit towards a single fusion target. The explosion will provide nearly 7 watts of power to a focal point with a diameter of approximately 100 μ m. These three ultra-high power lasers can also be used alone or in other combinations to study issues beyond fusion energy.

In addition to nuclear fusion and basic scientific research, the ATLAS facility will also support interdisciplinary research such as medicine. Among them, laser can be used to deposit energy in very localized areas to treat tumors. Other potential research for this facility includes microchip lithography and design, as well as detailed X-ray imaging of rapidly moving objects. The existing and new facilities will be combined and collectively referred to as the Advanced Extreme Photonics Laser (ALEPH) Center.

In addition, the LaserNetUS project has awarded $12.5 million to the university and a $16 million prize to launch the Inertial Fusion Science and Technology Center. These grants support research using existing campus facilities, including upgrading high-power ALEPH lasers.

The leading position of CSU in the field of laser research is mainly attributed to the work of outstanding professors Jorge Rocca and Carmen Menoni at the university. They are all members of the Department of Electrical and Computer Engineering, with Rocca still working in the Department of Physics and Menoni working in the Department of Chemistry. For many years, the two have been leading interdisciplinary research on this topic at university.

Source: OFweek

Recommandations associées
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    Voir la traduction
  • Photonic hydrogel of high solid cellulose with reconfigurability

    Recently, Qing Guangyan, a researcher team from the Research Group on Bioseparation and Interface Molecular Mechanism (1824 Group) of Biotechnology Research Department of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, designed and prepared a highly solid cellulose photonic hydrogel with reconfigurability and mechanical discoloration. This preparation method opens up a new way t...

    02-17
    Voir la traduction
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    Voir la traduction
  • Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

    Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional ma...

    2024-02-23
    Voir la traduction
  • Shanghai Institute of Optics and Fine Mechanics has made significant breakthroughs in the study of laser damage performance of mid infrared anti reflective coatings

    Recently, the Thin Film Optics Research and Development Center of the High Power Laser Component Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with researchers from Hunan University and Shanghai University of Technology to make new progress in the study of laser damage performance of mid infrared anti reflect...

    04-07
    Voir la traduction