Français

Oxford University Tokamak Energy Company develops laser technology for fusion power plants

397
2024-03-14 15:00:07
Voir la traduction

Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.
The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.

Clean, safe, and renewable nuclear fusion power generation occurs inside the tokamak, which is a device that heats plasma to over 100 million degrees Celsius.
A professional laser system will closely and accurately measure the hydrogen fuel contained inside, ensuring that the burning plasma remains stable and maintains density.

Dr. Tadas Pyragius, a plasma physicist at Tokamak Energy, explained, "Measuring plasma density is key to our understanding and control of fusion fuels and future efficient power plant operations.".
The interaction between laser beams emitted by plasma and electrons tells us the density of fuel, which is crucial for sustained fusion conditions and providing safe and reliable energy to the power grid.

"The extreme conditions caused by the nuclear fusion process mean that we now need to improve laser based diagnostic technology to advance our mission of providing clean, safe, and affordable nuclear fusion energy in the 2030's."
The ST40 of Tokamak Energy is the first private nuclear fusion machine to achieve a plasma ion temperature of 100 million degrees Celsius, which is the threshold for commercial nuclear fusion.

Since achieving a breakthrough in 2022, the machine has undergone a series of hardware upgrades, including new power supplies and diagnostic systems.
Last year, the company successfully debugged the Thomson scattering laser diagnostic instrument for ST40 to provide detailed readings of plasma temperature and density at specific locations.
After further upgrades and maintenance, the machine will be put back into use later in 2024.

Source: Laser Net

Recommandations associées
  • Ultra capillary properties of composite liquid absorbing cores manufactured by laser powder bed melting additive manufacturing

    Researchers from Sichuan University, the Key Laboratory of Advanced Special Materials and Preparation Processing Technology of the Ministry of Education, and the Nuclear Additive Manufacturing Laboratory of China Nuclear Power Research and Design Institute reported on the study of the ultra capillary performance of laser powder bed melting additive manufacturing composite structure liquid absorbin...

    03-20
    Voir la traduction
  • The scientific research team of Shenzhen University of Technology has discovered a new mechanism of attosecond pulse coherent radiation

    Recently, a team of Professor Ruan Shuangchen and Professor Zhou Cangtao from Shenzhen University of Technology proposed for the first time internationally a physical solution based on the generation of attosecond pulses and subperiodic coherent light shock radiation from a superluminal plasma wake field, and explained a new coherent radiation generation mechanism dominated by collective electron ...

    2023-10-14
    Voir la traduction
  • Fujitsu collaborates to research and develop multi band wavelength fiber optic transmission technology

    Recently, Fujitsu and KDDI research company have successfully developed a high-capacity multi band wavelength multiplexing transmission technology using installed optical fibers.The new technology of the two companies can transmit wavelengths beyond the C-band by using batch wavelength conversion and multi band amplification technology.Expanding transmission capacity in remote areasTwo companies h...

    2023-12-05
    Voir la traduction
  • Lorenz competes in the LiDAR market with MEMS galvanometer technology

    At the recently concluded 2024 International Consumer Electronics Show (CES), automotive related technologies and solutions shone brightly, and a group of Chinese LiDAR suppliers competed on the same stage.The technologically advanced products, systematic solutions, continuously increasing delivery and market retention have to some extent proven that in the context of the development of automotive...

    2024-04-13
    Voir la traduction
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    05-09
    Voir la traduction