Français

Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

968
2024-05-21 14:05:14
Voir la traduction

According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.
ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.

They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Aperture (NA) EUV devices, indicating that Intel has obtained all 5 devices planned to be produced in 2024 at a cost of approximately $370 million per unit, highlighting Intel's significant investment in advanced manufacturing technology.

Meanwhile, Intel's competitors such as Samsung and SK Hynix will have to wait until the second half of 2025 to acquire such devices. They also stated that the American chip manufacturer purchased these devices in advance when announcing the resumption of chip foundry or chip production business.

Many people may be curious about when TSMC will join this trend. So far, the company has stated that it has not seen the benefits of high numerical aperture (NA) configurations for customers, so it will continue to use extremely ultraviolet (EUV) lithography equipment for the foreseeable future. However, for TSMC, this move may not be bad because it has high-income customers. Technology giants including Nvidia, AMD, Apple, and even Intel are ready and willing to pay any price for Intel's most advanced products, so we must wait for a few years to see if Intel's gamble will pay off.
ASML's high numerical aperture (NA) extreme ultraviolet EUV device is an essential equipment for 2nm process node chips, with a unit price exceeding 500 billion Korean won.

Numerical aperture (NA) is a measure of the ability to collect and focus light. The higher the value, the better the light collection effect, and the NA of high NA EUV devices increases from 0.33 to 0.55. This basically means that the device can draw finer circuit patterns. In recent years, high numerical aperture EUV technology has made significant progress in resolution and transistor size by changing the design of optical devices used to project patterns onto wafers.

Intel is adopting high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment faster than its competitors to win customers. The company entered the contract manufacturing market again in 2021, but the business incurred a loss of $7 billion last year.
Intel obtained its first high NA EUV device from ASML in January this year and completed assembly in Oregon in mid April. This TWINSCAN EXE: 5000 device is the first commercial lithography system of this type, and Intel plans to use it to reduce the total number of outsourced wafers, thereby enhancing the profitability of its foundry business.

The company hopes this will help its struggling OEM business turn the tide, having previously reported an operating loss of $7 billion in 2023.

Although the device is expected to be fully operational by 2025, Intel has stated that it will use it to produce 14A process chips and is expected to achieve full operation around 2026. This demonstrates Intel's long-term planning and firm determination in advanced manufacturing technology. Considering the schedule involved, it remains to be seen how Intel will handle the 5 high NA devices as it will not use them throughout the entire chip production process.

ASML is the world's only supplier of extreme ultraviolet lithography machines required to manufacture the most advanced 3nm and 5nm chips. ASML is headquartered in the suburbs of Eindhoven, Netherlands and is the most valuable technology company in Europe with a market value of 338.7 billion euros (363.2 billion US dollars).

The working principle of the company's high NA EUV machine is to use a laser to impact and heat tin droplets up to approximately 220000 degrees Celsius (396032 degrees Fahrenheit), generating 13.5nm wavelength light, which is not naturally generated on Earth. Then, these lights are reflected by a mask containing a circuit pattern template and passed through an optical system composed of the most precise mirrors ever created.
In April 2024, Peter Wennink, who had been serving as the CEO of ASML for a long time, announced his retirement, replaced by former Chief Business Officer Christophe Fouquet.

As the only global supplier of extreme ultraviolet lithography machines required for manufacturing the most advanced chips, ASML's high NA EUV equipment operates on complex physical processes. By colliding tin droplets heated to extremely high temperatures with lasers, specific wavelengths of light are generated, which are then reflected and focused onto the wafer through a precise optical system, achieving high-precision pattern etching.
With the continuous progress of technology and the growth of market demand, advanced manufacturing technology has become the core competitiveness in the field of chip manufacturing. Intel's purchase of high NA EUV devices will further enhance its competitiveness in the foundry market and help drive innovative development in the entire chip industry.

Source: OFweek

Recommandations associées
  • Super-resolution fluorescence microscopy utilizes fluorescent probes and specific excitation and emission programs

    Super-resolution fluorescence microscopy surpasses the diffraction limit of what used to be a barrier by using fluorescent probes and specific excitation and emission programs. Most SR technologies heavily rely on image computation and processing to retrieve SR information. However, factors such as fluorescence group photophysics, chemical environment of the sample, and optical settings may cause ...

    2024-01-23
    Voir la traduction
  • Snapmaker Announces Its First Dedicated Laser Cutter, the Ray, in 20w and 40w Flavors

    Snapmaker has been making three-in-one manufacturing tools -- The Snapmaker, Snapmaker 2 and Artisan -- for over six years now. These machines have changeable tool heads that can be used for 3D printing, laser cutting and CNC machining. At the beginning of this year, it branched out to make adedicated 3D printer, the J1-- a dual print-head machine that works very well -- and today the ...

    2023-08-28
    Voir la traduction
  • Optoma Launches Environmentally Friendly Short Focus Laser 4K Ultra High Definition Home Entertainment and Gaming Projector

    Ranked first in the global and American projection technology fields with 4K UHD and DLP ® The brand Optoma has launched Optoma UHZ35ST, a 4K ultra high definition home entertainment and gaming projector that follows the popular UHD35STx with a short focus laser. With its external power supply and various functional upgrades, UHZ35ST provides higher reliability, portability, and energy e...

    2023-09-19
    Voir la traduction
  • Combined spectral lasers can unlock the potential of laser plasma accelerators

    A team of researchers in Berkeley Lab's Accelerator Technology and Applied Physics (ATAP) division has developed a new technique that combines fiber lasers of different wavelengths to generate ultra-short laser pulses. The research is in the journal Optics Letters.This work could advance the development of laser plasma accelerators (LPA), which have the potential to push the frontiers of high-en...

    2023-08-04
    Voir la traduction
  • Panasonic has announced the launch of two new laser projectors

    Panasonic announced the launch of two new 1-Chip 4K DL laser projectors, the PT-REQ15 projector offering 15,000 lumens of brightness, while its counterpart, the PT-REZ15, offers 15,000 lumens of WUXGA resolution.The REQ15 uses Panasonic's Quad Pixel Drive, a two-axis pixel shift technology, to reproduce 4K images. It is capable of projecting 2K/240Hz content on multiple edge hybrid screens with a ...

    2023-09-07
    Voir la traduction