Français

The method of reducing the linewidth of laser beam by more than 10000 times

53
2025-07-28 12:00:37
Voir la traduction

A project at Macquarie University has demonstrated a way to narrow the linewidth of a laser beam by a factor of over ten thousand.
Published in APL Photonics, the technique offers a promising route toward ultra-narrow linewidth lasers for potential use in a wide range of pump-pulse systems.

Laser linewidth measures how precisely a beam of light maintains its frequency and color purity, and narrow-linewidth lasers are increasingly valuable in applications such as precision sensing, spectroscopy, and quantum science.

 



Dampers at work: laser linewidth


But for these uses, control of the laser parameters is crucial. Existing ways of reducing the quantum noise properties of an input pulse include the use of Brillouin lasers, which force an interaction between the laser pulse and the vibrational excited states termed phonons. But this "phonon dephasing" can require relatively long timescales to achieve its noise reductions.

The team at Macquarie's Photonics Research Centre employed a different approach, and used stimulated Raman scattering.

"One current method to narrow laser linewidth uses Brillouin lasers, where sound waves interact with light; but the effect is relatively weak, typically narrowing by only tens to hundreds of times," commented Richard Mildren from the MQ Photonics Research Center.

"Our technique uses stimulated Raman scattering, where the laser stimulates much higher frequency vibrations in the material, and is thousands of times more effective at narrowing linewidth."

Diamond vibrations

Theory says that a Raman laser can have a dramatic damping effect, based around a complex three-wave interaction that counters inherent phase fluctuations in the laser spectrum.

The Macquarie team tested this principle using diamond crystals, which have exceptional thermal properties and provide a stable testing environment. In this architecture the Raman damping transfers the laser's random phase fluctuations into the diamond crystal as vibrations, where they are absorbed and dissipated in a few trillionths of a second.

Using a diamond crystal measuring a few millimeters across in a carefully designed cavity, the project tested this theory with a deliberately noisy input beam with linewidth exceeding 10 MHz. Results showed that the Raman scattering technique narrowed the output laser beam to the 1 kHz limit of their detection system, representing a reduction factor of more than 10,000, with further narrowing possible.

"Our computer modeling suggests we could narrow laser linewidth by more than 10 million times using variations of the current design," noted Macquarie's David Spence.

Improved spectral purity could enhance atomic clocks and gravitational wave detectors, as well as assisting the precise laser control needed in quantum computers, where phase noise inevitably introduces errors in the computations.

"We are essentially proposing a new technique for purifying the spectrum of lasers that can be applied to many different types of input lasers," commented Richard Mildren.

Source: optics.org

Recommandations associées
  • SuperLight Launches "First" Portable Broadband Laser

    Supercontinuum spectrum laser developer SuperLight Photonics has launched the so-called "first revolutionary portable broadband laser" - SLP-1000. Its wide spectral output provides a light source for industrial and medical imaging applications as well as spectroscopy.Supercontinuum spectrum lasers, also known as broadband lasers, provide high bandwidth while maintaining high coherence and low nois...

    2023-11-02
    Voir la traduction
  • Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

    South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport sh...

    2023-09-22
    Voir la traduction
  • ABB will add optical sensors to four greenhouse gas monitoring satellites

    ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas ...

    2023-12-06
    Voir la traduction
  • Coherent Axon laser won the 2023 Business Innovation Award from the British Physical Society

    One of the laser leaders in the field of life sciences, Coherent Gao Yi (New York Stock Exchange: COHR), recently announced that its Axon laser won the 2023 Business Innovation Award at the awards ceremony held by the British Physical Society on October 30th.Dr. Vincent D. Mattera, Jr., Chairman and CEO of Coherent, stated that, Coherent, especially our team at the Center for Excellence in Ultrafa...

    2023-11-03
    Voir la traduction
  • DataLase launches a new laser active transparent to white coating

    Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. Thi...

    2024-03-09
    Voir la traduction