Français

LIS Technologies closes $11.88 million seed round of financing

190
2024-08-22 15:24:26
Voir la traduction

On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing.

 



According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a number of investors including 28 Ventures Fund, a leading U.S. advanced nuclear technology company, and several active investors in the nuclear technology sector.

The financing was originally set at $1.3 million, but given the overwhelming response and high level of market acceptance of LIST's Laser Isotope Separation Technology (L.I.S.T.), a significant expansion was ultimately realized, underscoring investors' unwavering confidence in the company's vision and growth potential.

The funding will directly assist the Company in relaunching and accelerating the development and application of its proprietary, patented advanced laser enrichment technology. This technology previously demonstrated its potential in the 1980s and early 1990s and was rated Technology Maturity Level (TRL) 4 by the National Nuclear Security Administration (NNSA), signifying a solid foundation of technological maturity.

LIST plans to utilize the additional funding to build a new R&D facility in Oak Ridge, Tennessee to advance physical testing and demonstration programs, and plans to recruit additional top scientists and engineers to join its elite team to drive technology innovation.

The company's CRISLA technology has a wide range of applications, not limited to the enrichment of uranium for nuclear fuel, but also involves the production of stable isotopes in fields such as medicine and scientific research, as well as cutting-edge applications in quantum computing, particularly semiconductor manufacturing.

The technology is capable of producing Low Enriched Uranium (LEU) and Highly Enriched Uranium (HALEU) in a single or dual-stage process, respectively, through the high selectivity of laser light. Its high throughput, high duty cycle, and simplified process flow herald lower capital and operating costs compared to conventional technologies, demonstrating a strong market competitiveness.

We are honored that LIST and its vision to modernize the U.S. nuclear energy industry and its fuel supply chain is receiving such strong support,” said Christo Liebenberg, CEO of LIS Technologies Inc. This marks an important milestone not only for our company, but also a critical step in a new chapter for the U.S. nuclear energy industry. We are confident that the renaissance of L.I.S.T. technology will lead the world into a new era of more cost-effective uranium enrichment, ensure a stable domestic supply of LEU and HALEU fuel, and lay a solid foundation for a thriving and innovative nuclear energy industry. The investment support from the advanced nuclear technology sector is undoubtedly the best proof of our relentless pursuit and strong commitment.”

About LIS Technologies

LIS Technologies Inc. is a U.S.-based company specializing in the development of advanced laser technologies that utilize infrared wavelengths to precisely excite molecules of targeted isotopes for efficient separation. As a leader in the field of laser uranium enrichment, LIST's L.I.S.T. technology not only outperforms traditional methods (e.g., gaseous diffusion, centrifuges, etc.) in terms of energy efficiency, but also demonstrates significant advantages in terms of capital and operating costs. The technology is widely used in LEU production, HALEU supply for SMRs and micro reactors, stable isotope preparation for medical and scientific research, and semiconductor innovation for quantum computing. The company brings together the world's leading nuclear technology experts and works closely with industry leaders, governments and the private nuclear sector to advance the future of nuclear technology.

Source: OFweek

Recommandations associées
  • Patterned waveguide enhanced signal amplification within perovskite nanosheets

    Researchers at Busan National University, led by Kwangseuk Kyhm, Professor of Ultra Fast Quantum Optoelectronics from the Department of Optics and Mechatronics, are enhancing signal amplification inside cesium bromide lead perovskite nanosheets through patterned waveguides.Perovskite is a highly attractive material in solar cell applications, but its nanostructure is now being explored as a new la...

    2024-01-10
    Voir la traduction
  • Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale la...

    2023-10-12
    Voir la traduction
  • Lumentum Holdings changes CEO

    On February 3, 2025, Lumentum Holdings has appointed Michael Hurlston as its President, CEO, and Director, effective from February 7. Hurlston replaces Alan Lowe, who has been serving as the company's President and CEO since 2015. Lowe will continue to serve as a member of Lumentum's board of directors and as a consultant to the company.Lumentum is a major supplier of high-speed optical transceive...

    02-06
    Voir la traduction
  • Duke University: Laser imaging holds promise for early detection of risky artworks

    Compared to Impressionist paintings taken 50 years ago, upon closer inspection of Impressionist paintings in museums, you may notice some strange things: some are losing their bright yellow hue.Taking the dramatic sunset in Edward Munch's masterpiece "The Scream" as an example. The once bright orange yellow parts of the sky have faded to off white.Similarly, in his painting "The Joy of Life", Henr...

    2024-05-14
    Voir la traduction
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    Voir la traduction