Français

Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

891
2024-02-03 10:38:25
Voir la traduction

Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.

In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the comprehensive industrial application of this technology.

This achievement will not only bring practical benefits to companies seeking deeper penetration welding, but also significantly improve welding quality, reduce oxidation problems, and minimize the time required for cleaning parts after welding.

According to CVE, vacuum laser welding, as a relatively new connection technology, has a welding depth 2-3 times that of traditional laser welding methods. However, the issue of optical pollution has always hindered the widespread application of this technology in industry.

The optical protection system of CVE ensures that the cleanliness of welded components is comparable to that of electron beam welding, while also ensuring a longer lifespan of the laser coupling window. Low cost consumable window, continuously welded at low power (3kW) for up to 3 hours without significant weld degradation.

In the past two years, with funding support from the UK Innovation UK, teams from CVE and Cranfield University have jointly established testing systems, conducted in-depth research on various aspects of vacuum laser technology, and experimented with various concepts and solutions. The experimental data of these systems were used to develop an optical protection system that can operate at extremely low levels of particle generation.

Currently, CVE is working on manufacturing vacuum laser welding machines using this technology. The company stated that its optical protection system ensures the cleanliness of welded components comparable to electron beam welding. This breakthrough technological advancement will provide global engineers with more welding options and inject new vitality into innovation and development in the industrial manufacturing field.

Source: OFweek Laser Network

Recommandations associées
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    Voir la traduction
  • The United States promotes the development of next-generation EUV lithography technology

    LLNL has long been a pioneer in the development of EUV lithography technology.A laboratory located in California will lay the foundation for the next development of extreme ultraviolet (EUV) lithography technology. The project is led by Lawrence Livermore National Laboratory (LLNL) and aims to promote the next development of EUV lithography technology, centered around the laboratory's developed dr...

    01-06
    Voir la traduction
  • Zeiss Medical Technology nominated for the 2025 German Future Award

    Germany’s Office of the Federal President has announced the nominations for the German Future Prize 2025 (“Deutscher Zukunftspreis”). This year’s nominees include Dr. Mark Bischoff, Dr. Gregor Stobrawa and Dirk Mühlhoff from Zeiss Medical Technology (ZMT), for their project for minimally-invasive lenticule extraction to correct refractive errors. Nominated: Dirk Mühlhoff, Mark Bischoff, and Gr...

    09-22
    Voir la traduction
  • Researchers successfully 3D printed polymer based robotic arms through laser scanning

    Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.Inkbit, a derivative compa...

    2023-11-16
    Voir la traduction
  • San’an and Inari acquire Lumileds for $239 million

    San’an Optoelectronics, an LED chip manufacturer, based in China, and Inari Amertron Berhad, a Malaysian company that provides outsourced semiconductor assembly and test (“OSAT”) services to the semiconductor industry, are to acquire Lumileds Holding B.V. and its European and Asian subsidiaries (“Lumileds International”). Lumileds is based in Schiphol, The Netherlands.The all-cash deal is valued a...

    08-13
    Voir la traduction