Français

Researchers successfully 3D printed polymer based robotic arms through laser scanning

328
2023-11-16 15:29:51
Voir la traduction

Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.

The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.

Inkbit, a derivative company of the Massachusetts Institute of Technology, has developed a new printing technology. Researchers at the Federal Institute of Technology in Zurich have developed several robot applications and helped optimize the technology used for slow curing polymers. The researchers jointly published their research findings in the journal Nature.

Using this new technology, researchers have successfully printed a robotic hand made of bones, ligaments, and tendons made of different polymers in one go for the first time.

So far, we are unable to manufacture this hand using the fast curing polyacrylate we use in 3D printing, "said Thomas Buchner, a doctoral student in the robotics professor Robert Katzschmann group at the Federal Institute of Technology in Zurich, who was the first author of the study. We are currently using slowly curing thiophene polymers. They have excellent elasticity and recover to their original state faster than polyacrylates after bending.

Researchers say their method makes thiophene polymers an ideal choice for producing elastic ligaments in robotic arms. They can also fine tune the stiffness of thiol groups to meet the requirements of soft robots.

Robots made of soft materials, such as the hands we have developed, have advantages over traditional metal robots. Because they are very soft, there is a lower risk of injury when working with humans, and they are more suitable for handling fragile goods, "Katzschmann said.

In order to adapt to slowly curing polymers, researchers further developed 3D printing by adding a 3D laser scanner. The scanner will immediately check each printing layer for any surface irregularities. This technology is not a smooth and uneven layer, but rather considers unevenness when printing the next layer.

The feedback mechanism compensates for these irregularities in the next layer in real-time and accurately by calculating any necessary adjustments to the amount of material to be printed, "said Professor Wojciech Matusik of the Massachusetts Institute of Technology.

Source: Laser Network

Recommandations associées
  • Pressure sensing using dual color laser absorption spectroscopy

    The research team led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences recently designed a concentration independent pressure sensing technology for high-temperature combustion diagnosis. This method is based on dual color laser absorption spectroscopy.The results of this study have been published in Optics Letters.Aircraft eng...

    2024-03-09
    Voir la traduction
  • In situ bubble point measurement using spectroscopy

    Develop and research a new downhole bubble point pressure measurement technology suitable for black oil and volatile oil to enhance well analysis using spectroscopy.Representative fluid characteristics are required for a wide range of oilfield lifespans, such as the initial scale and production planning of reservoir hydrocarbon reserves. Fluid characteristics are usually obtained from laboratory s...

    2024-01-31
    Voir la traduction
  • Research on LiDAR at the University of Electronic Science and Technology of China, published in Nature

    The team from the School of Information and Communication Engineering at the University of Electronic Science and Technology of China has proposed for the first time a laser radar instrument based on the dispersion Fourier transform method, forming a new demodulation mechanism. This instrument breaks through the cross limitations of measurement speed, accuracy, and distance, and has unique advanta...

    2024-06-22
    Voir la traduction
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    Voir la traduction
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    Voir la traduction