Español

150 kW Ultra High Power Laser Sensor Released

393
2024-12-27 14:30:51
Ver traducción

Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.

This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely low reflectivity (<0.5%) ensures operational safety. The 150 kW sensor integrates a beam collector and measurement unit, designed to meet the growing demand for higher power in applications. Applications such as the development and testing of high-power fiber lasers, directional energy systems, and cutting and drilling in industrial production.

Ophir Photonics General Manager Reuven Silverman said, "Directed energy and industrial applications such as cutting are driving demand for higher power lasers, but so far there is no reliable solution for situations where power exceeds 120 kW. The Ophir 150 kW ultra-high power laser sensor takes high-power measurement to a new level. It provides accurate and reliable results for the research and production teams of high-power laser manufacturers and directed energy weapon developers. Whether integrated into third-party systems or used with easy-to-use Ophir software, this sensor is a powerful tool for ultra-high power laser measurements, providing reliability and operational efficiency.

The Ophir 150 kW ultra-high power sensor consists of two components: a beam collector for processing high-power laser absorption and heat dissipation, and a unit for measuring power levels. The measurement unit is equipped with an RS232 interface and an "intelligent connector" interface, which can be used in conjunction with MKS's Centauri, StarBright, StarLite, and other Ophir smart displays; Juno and Juno+compact USB PC interface; Juno RS, Pulsar, and Quasar virtual power and energy meters; And EA-1 Ethernet adapter.

The design of the 150 kW ultra-high power sensor fully considers flexibility. Cooling options include using tap water or deionized (DI) water. With a 200mm aperture, it is lightweight and measures 520x545x750mm in size. When not containing water, it weighs less than 60 kg.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    Ver traducción
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of intelligent optical microscopy imaging

    Recently, the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of intelligent optical microscopic imaging, and the research results were published online in the international high-level academic journal Opto Electronic Advances (IF: 15.3). The first author of the paper is Tian Xuan, a 2024 doctor...

    2024-09-09
    Ver traducción
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    Ver traducción
  • Scientists develop high-power fiber lasers to power nanosatellites

    The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the...

    2024-01-18
    Ver traducción
  • The Trends and Challenges of the Metal 3D Printing Industry in 2025

    In the past decade, metal 3D printing technology has experienced rapid development, from the initial production of orthopedic implants to the manufacturing of rocket boosters. This technology has become an indispensable part of multiple key industries. With the advancement of technology and the expansion of the market, we are witnessing the revival of electron beam melting (EBM) technology and the...

    01-21
    Ver traducción