Español

Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

576
2025-02-21 15:34:33
Ver traducción

In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.

Laser devices operating in the 2 µ m spectral range are highly regarded for their safety for the eyes, high absorption rate by water, and low atmospheric attenuation. Traditional 2 µ m lasers typically require low-temperature cooling to control thermal effects, which increases system complexity and cost, and limits their application in compact, space limited, and mobile platforms. Therefore, developing high-power room temperature 2 µ m lasers has become an important research direction.

Table 1: Overview of 2 μ m Region Thin Film Laser. Source: Bingying Lei, Liyi Zhang, Sen Yang et al, 《Near diffraction-limited in-band pumped Ho:YLF composite thin disk laser at 2 μm》,《Optics Express》(2025).

In this study, researchers developed a novel composite thin film structure based on Ho: YLF. By combining 2 at.% doped Ho: YLF crystal with undoped YLF coating, the mechanical robustness of the crystal is significantly improved, while effectively suppressing the amplification effect of spontaneous emission, thereby enhancing the stability of laser output.

Figure 1: Schematic diagram of Ho: YLF composite thin film crystal. (a) 3D schematic diagram of Ho: YLF composite thin film. (b) Photo of Ho: YLF composite sheet welded onto SiC heat sink. (c) Cross sectional view of Ho: YLF composite thin film along the direction of pump light propagation. Source: Bingying Lei, Liyi Zhang, Sen Yang et al, 《Near diffraction-limited in-band pumped Ho:YLF composite thin disk laser at 2 μm》,《Optics Express》(2025).

In addition, the researchers also optimized the optical pumping system, adopting a multi-channel configuration with 12 pump cycles and combining efficient thermal management strategies. This method not only ensures high power output, but also minimizes the thermal lens effect, resulting in excellent beam quality.


Figure 2: Schematic diagram of Ho: YLF thin film laser. (a) 3D schematic diagram of thin film laser based on 12 pump modules. (b) Experimental setup diagram showing a composite thin film laser head with a water-cooled radiator. Source: Bingying Lei, Liyi Zhang, Sen Yang et al, 《Near diffraction-limited in-band pumped Ho:YLF composite thin disk laser at 2 μm》,《Optics Express》(2025).

The experimental results show that when the laser is pumped by a 1940nm thulium doped fiber laser with a diameter of 1.8mm, the peak output power reaches 26.5W, the optical efficiency is 38.1%, and the slope efficiency is 42.0%. The beam quality has almost reached the diffraction limit, and the relative standard deviation of power stability is only 0.35%.

Figure 3: Absorption and emission cross-sections of 2 at.% doped Ho: YLF crystals at room temperature. Source: Bingying Lei, Liyi Zhang, Sen Yang et al, 《Near diffraction-limited in-band pumped Ho:YLF composite thin disk laser at 2 μm》,《Optics Express》(2025).

Figure 4 Output power of Ho: YLF thin film laser measured using 3% transmittance OC. Source: Bingying Lei, Liyi Zhang, Sen Yang et al, 《Near diffraction-limited in-band pumped Ho:YLF composite thin disk laser at 2 μm》,《Optics Express》(2025).


Figure 5: (a) Room temperature spectra of thulium doped fiber laser pumping and (b) CW emission. The dashed line represents the absorption cross-section and emission cross-section of Ho: YLF crystal. Each spectrum represents the average of five measurements. Source: Bingying Lei, Liyi Zhang, Sen Yang et al, 《Near diffraction-limited in-band pumped Ho:YLF composite thin disk laser at 2 μm》,《Optics Express》(2025).


Figure 6: Output beam quality. (a) M2 measurement of 26W output beam quality. (b) Beam profiles at different distances (L=-200mm, 0mm, 100mm, and 300mm). Source: Bingying Lei, Liyi Zhang, Sen Yang et al, 《Near diffraction-limited in-band pumped Ho:YLF composite thin disk laser at 2 μm》,《Optics Express》(2025).

Professor Fu said, "This work paves the way for the development of compact and economically efficient high-power 2 µ m lasers, which may reach the level of 100W and promote the development of ultrafast laser science. It also provides a new method for developing high-power and portable infrared laser systems.

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • Researchers enhance the signal of perovskite nanosheets

    In the field of optoelectronics, researchers from Busan National University in South Korea and the University of Oxford in the UK have successfully improved the signal amplification ability of CsPbBr3 perovskite nanosheets through innovative patterned waveguide methods, bringing new possibilities for the future of optoelectronics. This breakthrough not only has potential applications in fields suc...

    2024-02-22
    Ver traducción
  • Processing application of ultrafast laser on bulk metallic glass

    Recently, an international research team led by Professor Zhang Peilei from the School of Materials Science and Engineering at Shanghai University of Engineering and Technology published a review paper titled "Research status of femtosecond lasers and nanosecond lasers processing on bulk metallic glasses (BMGs)" in the renowned journal Optics&Laser Technology in the field of optics and lasers....

    2023-09-18
    Ver traducción
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    Ver traducción
  • Lawrence Livermore National Laboratory develops PW grade thulium laser in the United States

    Recently, according to Tom's Hardware, Lawrence Livermore National Laboratory (LLNL) in the United States is developing a PW (1015 W) level large aperture thulium (BAT) laser. It is reported that this laser has the ability to increase the efficiency of extreme ultraviolet lithography (EUV) light sources by about 10 times, and may potentially replace the carbon dioxide laser used in current EUV too...

    02-13
    Ver traducción
  • Atomstack leads the new track of intelligent laser engraving

    In today's rapidly developing technology, laser engraving technology is like a mysterious magician, constantly demonstrating amazing skills. In this field full of creativity and competition, Atomstack stands out with its outstanding technology and innovative spirit, becoming a leader in the new track.As the only enterprise in the semiconductor laser engraving machine industry with an annual shipme...

    2024-11-15
    Ver traducción