Español

Construction of Advanced New Laser Research Centers in American Universities

377
2024-10-30 11:51:58
Ver traducción

The ATLAS R&D center is expected to be completed by mid-2026!
A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science Program of the US Department of Energy's Office of Science and has established a $150 million strategic public-private partnership with Marvel Fusion, which will be launched in 2023.

This new building will be called the Advanced Technology Laser Applications and Science (ATLAS) facility. One of the main research focuses of this facility is laser driven fusion as a viable clean energy source.

After completion, the facility will be equipped with an upgraded version of the existing ultra-high power laser developed by CSU, as well as two new lasers provided by Marvel. The ATLAS facility will consist of a set of high-intensity, high repetition rate lasers that can be configured to simultaneously emit towards a single fusion target. The explosion will provide nearly 7 watts of power to a focal point with a diameter of approximately 100 μ m. These three ultra-high power lasers can also be used alone or in other combinations to study issues beyond fusion energy.

In addition to nuclear fusion and basic scientific research, the ATLAS facility will also support interdisciplinary research such as medicine. Among them, laser can be used to deposit energy in very localized areas to treat tumors. Other potential research for this facility includes microchip lithography and design, as well as detailed X-ray imaging of rapidly moving objects. The existing and new facilities will be combined and collectively referred to as the Advanced Extreme Photonics Laser (ALEPH) Center.

In addition, the LaserNetUS project has awarded $12.5 million to the university and a $16 million prize to launch the Inertial Fusion Science and Technology Center. These grants support research using existing campus facilities, including upgrading high-power ALEPH lasers.

The leading position of CSU in the field of laser research is mainly attributed to the work of outstanding professors Jorge Rocca and Carmen Menoni at the university. They are all members of the Department of Electrical and Computer Engineering, with Rocca still working in the Department of Physics and Menoni working in the Department of Chemistry. For many years, the two have been leading interdisciplinary research on this topic at university.

Source: OFweek

Recomendaciones relacionadas
  • Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

    In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team...

    2023-08-31
    Ver traducción
  • Coherent Axon laser won the 2023 Business Innovation Award from the British Physical Society

    One of the laser leaders in the field of life sciences, Coherent Gao Yi (New York Stock Exchange: COHR), recently announced that its Axon laser won the 2023 Business Innovation Award at the awards ceremony held by the British Physical Society on October 30th.Dr. Vincent D. Mattera, Jr., Chairman and CEO of Coherent, stated that, Coherent, especially our team at the Center for Excellence in Ultrafa...

    2023-11-03
    Ver traducción
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Ver traducción
  • Germany's Tongkuai Laser Austria's Parsing Intelligent Factory Completed Expansion

    This month, German laser giant Trumpf completed an expansion project at its smart factory in Pasing, Austria. The opening ceremony was held in the presence of members of the Tongkuai Group family and representatives from the business and political circles. Over the past two years, Tongkuai has invested approximately 40 million euros in the expansion of the factory. The company has built two new...

    2024-09-14
    Ver traducción
  • Ring Laser Accuracy: Unprecedented Daily Measurement and Mapping of Earth's Rotation

    Scientists at the Technical University of Munich have made significant progress in measuring the Earth's rotation with unprecedented accuracy. Now, the ring laser from the Wettzell Geodetic Observatory can be used to capture data at a quality level unmatched anywhere in the world. These measurements are crucial for determining the position of the Earth in space, assisting climate research, and imp...

    2023-11-14
    Ver traducción