Español

Scientists use the light inside fibers as thin as hair to calculate

376
2024-01-20 10:36:54
Ver traducción

Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers.

"Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next major leap in computing technology," explained Professor Mehul Malik, an experimental physicist and physics professor at the Heriot School of Engineering and Physical Sciences.

But as optoelectronic circuits become larger and more complex, they become more difficult to control and manufacture, which may affect their performance. Our research demonstrates an alternative and more universal optoelectronic engineering method that utilizes processes that occur naturally in nature.

Professor Malik and his team are conducting research using widely used commercial optical fibers worldwide to transmit the internet to our homes and businesses. These fibers are thinner than the width of human hair and use light to transmit data.

By utilizing the natural scattering behavior of light inside optical fibers, they found that they could program the optical circuits inside the fibers in a high-precision manner.

This study was published today in the journal Nature Physics.

"When light enters optical fibers, it scatters and mixes in complex ways," Professor Malik explained. By studying this complex process and accurately shaping the light entering the fiber optic, we have found a way to carefully design the optical circuits inside this disease.

Optical circuits are crucial for the future development of quantum technology, which is designed at the microscopic level by working with individual atoms or photons. These technologies include powerful quantum computers with enormous processing power and quantum communication networks that cannot be hacked.

"For example, optical circuits are required at the end of quantum communication networks so that information can be measured after long-distance propagation," explained Professor Malik. They are also a crucial part of quantum computers, used for complex calculations of light particles.

Quantum computers are expected to make significant progress in areas such as drug development, climate prediction, and space exploration. Machine learning is another field that uses optical circuits to process large amounts of data very quickly.

Professor Malik said that the power of light lies in its multiple dimensions.
"We can encode a large amount of information on a single light particle," he explained. About its spatial structure, about its temporal structure, about its color. If you can use all these attributes for calculations simultaneously, it will release a lot of processing power.

The researchers also demonstrated how to use their programmable optical circuits to manipulate quantum entanglement, a phenomenon where two or more quantum particles can remain connected even when they are far apart. Entanglement plays an important role in many quantum technologies, such as correcting errors within quantum computers and achieving the safest types of quantum encryption.

Professor Malik and his research team at the Beyond Binary Quantum Information Laboratory at the University of Heriot conducted this study with collaborating scholars from institutions such as Lund University in Sweden, Sapienza University in Rome, and Twente University in the Netherlands.

Source: Laser Net

Recomendaciones relacionadas
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    Ver traducción
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    Ver traducción
  • Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

    As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.Unlocking the precise me...

    2023-09-25
    Ver traducción
  • South Korean DE&T will open new subsidiaries in the United States and Canada

    Recently, DE&T, a South Korean manufacturer of secondary batteries and display laser equipment, announced that the company will further expand its overseas business by opening new subsidiaries in the United States and Canada. According to its claim, this move is to carry out maintenance services for laser equipment locally. As of now, DE&T's overseas subsidiaries have increased from two to...

    04-08
    Ver traducción
  • Outstanding Optical Technologies at the 2025 Western Optoelectronics Exhibition in the United States

    In the long history of technological development, every major breakthrough in technology is like a shining star, illuminating the path forward for humanity. At the Photonics West conference in 2025, numerous breakthroughs in cutting-edge photonics technologies attracted the attention of the global academic and industrial communities. Several important technological advancements reported in this ex...

    02-12
    Ver traducción