Español

Intel installs the first EUV manufacturing tool that can emit lasers hotter than the sun

215
2024-04-22 16:00:17
Ver traducción

Chip giant Intel announced that it has completed the assembly work of the world's first commercial high numerical aperture (NA) extreme ultraviolet lithography (EUV) scanner. This device greatly improves the resolution and feature scaling of next-generation chips by changing the optical design used to project printed images onto silicon wafers.

This lithography equipment weighing 150 tons has been assembled at the Intel D1X research factory in Hillsborough and is currently undergoing calibration steps. It enables chip manufacturers to engrave tiny patterns on silicon wafers, thereby manufacturing microcircuits for computer chips.
The Dutch company ASML is the only company in the world to manufacture this type of tool. Intel's model is one of only two models in the world.

The workers in Intel factories are known for their white attire, and they usually wear bunny suits from head to toe. The rabbit suit here refers to a "cleanroom set", which is a standard equipment for cleanroom workers and can prevent particles on the skin, hair, or clothing from damaging the microscopic features on computer chips.

At Intel's large research factory in Hillsboro, another accessory has recently become commonplace: a safety helmet.
The workers at Intel factory spent several months assembling a huge manufacturing tool weighing 150 metric tons. It is the most advanced lithography tool currently available, one of only two in the world, manufactured by the Dutch company ASML.

This massive device is known as the High Numerical Aperture (NA) EUV manufacturing tool. It is the size of a double decker bus in a factory, but what you see is only a part of the whole. This tool can actually extend above the ceiling and below the floor.

From there, EUV (Extreme Ultraviolet) tools emit lasers at tiny tin droplets, emitting 50000 times per second, with an energy burst 40 times hotter than the surface of the sun. The resulting collision produces a shadow of ultraviolet radiation, which does not occur naturally on Earth.

This very large production tool produces very small things: light with a wavelength of only a few billionths of a meter. These tiny light waves enable semiconductor manufacturers to imprint smaller resolutions on computer chips than ever before, paving the way for generations of more powerful computers.

"We are innovating at the forefront of physics," said Jeff Birdsall, Vice President of Intel who helped lead the company's technology development.
As is well known, Intel is very secretive about its manufacturing technology. This time it showcased its new toy in a sales event. This month, the company invited journalists - even BBC news crews - to its Hillsborough factory to promote Intel's transformation story to the public and potential customers, showcasing a manufacturing tool that its competitors have not yet possessed.

Intel's technology has deviated significantly in the past decade, partly due to the slow adoption of the first batch of EUV tools in its factories. This allows Asian competitors to stay ahead, while Intel needs to pay a high price to catch up.

Intel has now committed to investing $100 billion in building advanced factories around the world. This includes $36 billion for upgrading the Hillsboro complex factory, where Intel is developing a new generation of chip technology, known as the new process node.

The 10000 engineers and technicians at Intel's Oregon research plant are putting this money into work, and the new lithography tools are at the core of this work. The cost of each EUV machine is close to $400 million, and Intel will need many of these machines to equip its Oregon factory and other factories distributed around the world.

Intel still has a few months of work to do on the new lithography tool, testing its functionality and learning how to use it. The first batch of commercial chips using more advanced technology will not be launched for at least two years.

Intel is betting heavily on smaller circuits, betting that customers and investors will be patient when its engineers refine the next generation of technology. Intel stated that it may take two to three years to start using this machine to produce chips. They will be called "14A" chips, hailed as one of the most advanced chips in the world, and are expected to be used in fields such as artificial intelligence.

Source: OFweek Laser Network

Recomendaciones relacionadas
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    Ver traducción
  • The Danish authorities have approved the sale of this laser manufacturer to Hamamatsu, Japan

    On May 6, 2024 local time, the Danish Business Administration (DBA) approved the sale of NKT Photonics to Photonics Management Europe S.R.L, a wholly-owned subsidiary of Hamamatsu Photonics K.K.On that day, Hamamatsu Photonics received a notice from the Danish Business Administration stating that the acquisition had been approved:(Source: The Danish Business Authority)NKT Photonics stated that the...

    2024-05-09
    Ver traducción
  • The team of researcher Wei Chaoyang of Shanghai Optical Machinery Institute has realized the manufacture of fused quartz components with high resistance to UV laser damage

    Recently, a team led by researcher Zhaoyang Wei of the Precision Optics Manufacturing and Testing Center of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has realized the manufacture of fused quartz components with high resistance to UV laser damage based on the defect characterization and removal process of CO2 laser. The research is published in Light: Advance...

    2023-09-11
    Ver traducción
  • Ultraviolet spectroscopy: a leap in accuracy and precision under extremely low light levels

    Ultraviolet spectroscopy plays a crucial role in the study of electronic transitions in atoms and rovibronic transitions in molecules. These studies are crucial for the testing of fundamental physics, quantum electrodynamics theory, determination of fundamental constants, precision measurements, optical clocks, high-resolution spectroscopy supporting atmospheric chemistry and astrophysics, and str...

    2024-03-08
    Ver traducción
  • New photon avalanche nanoparticles may usher in the next generation of optical computers

    A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab), Columbia University, and Autonomous University of Madrid has successfully developed a novel optical computing material using photon avalanche nanoparticles. This breakthrough achievement was recently published in the journal Nature Photonics, paving the way for the manufacture of optical memory and transistors at the nano...

    02-28
    Ver traducción