Español

Fulu and Longview begin design work on laser melting devices

773
2024-03-13 10:47:50
Ver traducción

Longview Fusion Energy Systems and Fluor have taken another step towards commercialization of laser fusion power plants.
According to the memorandum of understanding signed by the two companies, Fulu will design the factory for Longview Fusion Energy Systems. The two companies collaborated and signed a memorandum of understanding in 2023 to leverage Fulu's experience in developing and constructing large and complex facilities. Fulu will provide preliminary design and engineering to support the development of the Longview nuclear fusion power plant.

According to Longview, their laser fusion power plant has a capacity between 1000 and 1600 megawatts. They can meet the needs of small cities or provide process heat or electricity to drive the industrial production of materials required for operational necessities such as steel, fertilizers, and hydrogen fuel.

Longview stated that it does not require the construction of physical demonstration facilities and can focus on designing and building the world's first laser fusion energy plant with its partner Fluor.

Valerie Roberts, Chief Operating Officer and former NIF Construction/Project Manager at Longview, said, "We are building upon the success of NIF, but the Longview factory will use today's more efficient and powerful lasers and utilize additive manufacturing and optimization through artificial intelligence.".

The breakthrough in fusion energy gain at the Lawrence Livermore National Laboratory's national ignition facility has enabled the planning of a laser fusion factory to be realized.

"In the past 15 months, the energy gain of laser fusion has been proven multiple times, and the scientific community has verified these successes," said Edward Moses, CEO of Longview and former director of NIF. "It's time to focus on providing this new carbon free, safe, and abundant energy to the whole country as soon as possible."

According to Lawrence Livermore National Laboratory, in the NIF ignition experiment, a small capsule containing two types of hydrogen gas was suspended in a cylindrical X-ray "oven" called Hohlraum.

NIF's powerful laser heats Hohlraum to temperatures exceeding 3 million degrees Celsius, causing X-rays to heat and blow off the surface of the target capsule. This can lead to an implosion similar to a rocket, compressing and heating the fuel to extreme temperatures and densities until hydrogen atoms fuse and release energy.

In December 2022, the national ignition facility achieved fusion ignition, which was the first fusion ignition to generate energy greater than input energy.

Source: Laser Net

Recomendaciones relacionadas
  • 3D printed chocolate: a delicious fusion of innovation and sustainable development

    In the era of sustainable development and cutting-edge technology, the integration of 3D printing and culinary art is not only an innovation, but also a proof of human creativity. Imagine in such a world, your desserts are not just coming out of the kitchen, but carefully designed and printed layer by layer. This is not a glimpse of the distant future, but the reality of today, as developers have ...

    2024-02-19
    Ver traducción
  • Processing application of ultrafast laser on bulk metallic glass

    Recently, an international research team led by Professor Zhang Peilei from the School of Materials Science and Engineering at Shanghai University of Engineering and Technology published a review paper titled "Research status of femtosecond lasers and nanosecond lasers processing on bulk metallic glasses (BMGs)" in the renowned journal Optics&Laser Technology in the field of optics and lasers....

    2023-09-18
    Ver traducción
  • Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

    German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.Researcher Alexandro...

    2024-03-13
    Ver traducción
  • The researchers used ultrafast lasers to create nanoscale photonic crystals

    The optical properties of photonic crystals are closely related to their lattice constants, which are usually required to be in the same order of magnitude as the operating wavelength. In a crystal material, the photonic crystal structure is formed by the periodic arrangement in space of units whose dielectric constant is different from that of the crystal itself, and whose lattice constant depend...

    2023-08-04
    Ver traducción
  • BWT's 3000W product speed surges by 200%

    In the era of speed and precision, the field of thin and medium plate processing is experiencing a revolutionary transformation. Today, let's explore a remarkably fast tool -- BWT’s Lightning 3000W@34μm fiber laser, and witness its impressive performance.On busy production lines, this product is completing complex cutting tasks at astonishing speeds. Its high-speed, high-efficiency, and high-quali...

    05-12
    Ver traducción