Español

Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

470
2024-03-13 10:59:23
Ver traducción

German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.

Researcher Alexandro Albertucci from Jena Friedrich Schiller University suggests that this progress may benefit other data intensive applications both inside and outside the data center.

Researchers combine two basic photon technologies by embedding a layer of liquid crystal inside the waveguide. When the light beam propagating inside the waveguide enters the liquid crystal layer, it will change the phase and polarization of the light when an electric field is applied. Then, the modified beam passes through the second part of the waveguide, propagating a beam with modulation characteristics. The fused silica waveguide comprises a tunable wave plate. Researchers demonstrated the complete modulation of light polarization at two visible light wavelengths using this system.

Alberucci said, "Our work paves the way for integrating new optical functions into the entire volume of a single glass chip, enabling compact 3D photonic integrated devices that were previously impossible to achieve. The unique 3D characteristics of femtosecond written waveguides can be used to create new spatial light modulators, where each pixel is individually addressed by a waveguide.".

Albertucci added that this technology can also be applied in the experimental implementation of dense optical neural networks.
Femtosecond lasers can be used to write waveguides deep into the material, rather than just writing waveguides on the surface like other methods, making it a promising method to maximize the number of waveguides on a single chip. This method involves focusing a strong laser beam inside a transparent material. When the optical intensity is high enough, the beam will change the material under illumination, resembling a pen with micrometer level accuracy.

"The most important drawback of using femtosecond laser writing technology to create waveguides is the difficulty in modulating the optical signals in these waveguides," said Alberucci. Due to the need for devices capable of controlling the transmission of signals in a complete communication network, our work explores new solutions to overcome this limitation.

Although the optical modulation of femtosecond laser writing into waveguides was previously achieved through local heating of waveguides, the use of liquid crystals, such as in recent works, can directly control polarization. Albertucci said that the benefits of this method include lower power consumption; Can independently handle individual waveguides in bulk; And reduce crosstalk between adjacent waveguides.

In addition, although the use of liquid crystals as modulators has become mature, this work helps to map the route for using liquid crystal properties as modulators in photonic devices embedded with waveguides throughout the entire volume, said Alberucci.

Researchers say that as this study is still a proof of concept, more work needs to be done before the technology is ready for practical application. For example, current devices modulate each waveguide in the same way. Therefore, the goal of the researchers is to achieve independent control of each waveguide.
This study was published in Optical Materials Express.

Source: Laser Net

Recomendaciones relacionadas
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    Ver traducción
  • NUBURU announces its latest strategic blueprint

    Following the announcement of the immediate termination of a $2 million stock exchange agreement and its partnership with HUMBL, high-power blue laser light source manufacturer NUBURU has once again announced its latest strategic blueprint. Through specific understanding, after this strategic update, NUBURU's business model will cover two collaborative key business lines, with a focus on defense a...

    04-17
    Ver traducción
  • Redefining the Future of Sensing: In depth Study of Novel Plasma Waveguide Structures

    Imagine in such a world, the detection of trace substances is not only fast, but also incredibly accurate, indicating a new era of technological progress in health, safety, and environmental monitoring. Due to pioneering research on plasma waveguide structures, this vision is becoming increasingly realistic, aimed at enhancing refractive index sensing and spectral filtering. This innovative method...

    2024-03-04
    Ver traducción
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    Ver traducción
  • Lumibird, a well-known French optoelectronics company, increased its lidar production capacity by 16% year-on-year and was boosted by strong market demand

    On July 24, Lumibird, a well-known French optoelectronics company, released its latest semi-annual report. In the first half of the year, Lumibird's revenues were 97.2 million euros, up 16 percent from the same period last year. Of this, the Optoelectronics division contributed 45.9 million euros and the remaining 51.3 million euros came from its medical division. In the second quarter (Q2) ended ...

    2023-08-04
    Ver traducción