Español

BWT's 3000W product speed surges by 200%

663
2025-05-12 15:23:38
Ver traducción

In the era of speed and precision, the field of thin and medium plate processing is experiencing a revolutionary transformation. Today, let's explore a remarkably fast tool -- BWT’s Lightning 3000W@34μm fiber laser, and witness its impressive performance.

On busy production lines, this product is completing complex cutting tasks at astonishing speeds. Its high-speed, high-efficiency, and high-quality cutting capabilities make it a market favorite, continuously driving industry innovation.

 



Speed Soars!


Cutting tests show that the performance of the Lightning 3000W@34μm surpasses conventional products. For various materials, the efficiency of thin plate processing has increased severalfold, revolutionizing the laser cutting industry.

2mm aluminum alloy nitrogen cutting speed can reach 50m/min, 2.27 times faster than 50μm;

2mm carbon steel air cutting speed can reach 40m/min, 2.35 times faster than 50μm;

3mm stainless steel nitrogen cutting speed can reach 30m/min, 3 times faster than 50μm.

 



Fast! Stable! Precise!


The cutting test videos below demonstrate: in the 34μm vs. 50μm speed comparison, the 3000W@34μm processes faster, more steadily, and more precisely. Higher efficiency means lower production costs.

Additionally, with flexible positioning, even complex shapes can be formed accurately in one go.

The 3000W@34μm delivers outstanding results, with smooth cross-sections and neat edges on sample parts, leaving virtually no debris, significantly reducing the need for secondary processing.

This device excels in small-scale prototyping and is equally adept at handling large-scale production, balancing efficiency and quality. It stands out among many industry competitors, becoming a market leader.

 



Carbon Steel and Stainless Steel Cutting Samples


On the path to driving industry progress, BWT focuses on innovations in high power, high brightness, and high integration technologies, aiming to enhance the overall performance of fiber lasers. BWT is committed to providing superior and diverse laser solutions to global end customers, creating a new chapter in the future of laser applications together.

Source: BWT

Recomendaciones relacionadas
  • Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications"....

    2024-07-12
    Ver traducción
  • Mazak will showcase high-speed fiber lasers on Tube 2024

    Yamazaki Mazak designed the FT-150 fiber laser tube processing machine for high-speed cutting of small and medium-sized diameter pipes, for use in Tube 2024. The machine tool will be controlled by a new type of pipe cutting CNC, which will be exhibited for the first time in Europe.Tube 2024 will be held from April 15th to 19th in Dusseldorf, Germany. Mazak will be exhibited at booth C17 in Hall 5....

    2024-03-16
    Ver traducción
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Ver traducción
  • Tsinghua University has made progress in the field of magnetic field and laser composite processing

    The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal ...

    2023-09-16
    Ver traducción
  • Ecken develops a new type of iron silicon powder for 3D printing of motors

    Through the SOMA project funded by the European Union, organic silicon material expert Aiken has collaborated with research partners and clients to develop a new specialized iron silicon powder that can more efficiently 3D print motor components.Yesterday's electric motor was usually made by cutting and shaping parts from a metal plate. 3D printing can fundamentally improve efficiency and...

    2024-01-20
    Ver traducción