Español

Samsung Heavy Industries Developing a Laser High Speed Welding Robot for Liquefied Natural Gas Ships

556
2023-09-22 15:04:02
Ver traducción

South Korea's Samsung Heavy Industry announced on Thursday that it has developed the first laser high-speed welding robot in the maritime field, aimed at significantly improving the construction efficiency of liquefied natural gas (LNG) transport ships.

This new technology is specifically designed for rapid welding of thin film panels used in cargo compartments of liquefied natural gas transport ships. These films are made of thin layers of stainless steel and come into direct contact with ultra-low temperature liquid natural gas.

Compared to the traditional plasma arc welding (PAW) method, which takes about 5 minutes to weld a 2-meter-long membrane plate, the new robot can complete the task in just 1 minute.

The laser high-speed welding robot is developed by Samsung Production Technology Research Center and uses a swinging method to rotate the laser beam at precise intervals and speeds.

This technology also has defocusing function for adjusting the focus and laser displacement sensor for automatically positioning the bending welding position.

The integration of this advanced welding technology is expected to significantly improve the productivity of shipbuilding companies in the construction of liquefied natural gas transport ships.

The company plans to conduct application testing with the French engineering company GTT's liquefied natural gas cargo hold (MK-III) and begin full-scale production using this technology after obtaining final customer approval later this year.

Cui Douzhen, the head of Samsung Heavy Industry Production Technology Research Center, said: "Laser high-speed welding robots will become the core technology to maintain overwhelming competitiveness in the key process of liquefied natural gas transport ship cargo hold construction." "We plan to expand its application to the cargo hold of ultra-low temperature liquid hydrogen transport ships in the future.

Source: Laser Network

Recomendaciones relacionadas
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    Ver traducción
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    Ver traducción
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    Ver traducción
  • Yangtze Welcomes 8th Overseas Production Site

    On August 8, local time, Jalisco, Mexico welcomed the grand opening of Yangtze Optics Mexico Cable S.A. de C.V., marking the eighth overseas production base of Yangtze Optical Fiber & Cable Co. ("Yangtze Fiber Optics") has successfully set up its eighth overseas production base in its 36-year development history, further advancing its internationalization strategy blueprint. Today, we are pr...

    2024-08-14
    Ver traducción
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    Ver traducción