Español

Tongkuai will participate in the laser fusion energy research program

464
2024-02-01 18:05:32
Ver traducción

The US Department of Energy recently allocated $42 million to support the development of laser fusion technology and designated three new research and innovation centers. This strategic investment aims to promote laser based nuclear fusion to play an important role as a clean and sustainable energy source in the future. Trumpf is one of the main participants known for its laser expertise and actively participates in this project.

Trumpf is one of the pioneering forces in the field of production technology, committed to promoting and digitizing connected manufacturing processes to improve efficiency, accuracy, and future readiness. As one of the market and technology leaders in the industrial manufacturing of machine tools and lasers, Trumpf's innovation spans multiple fields. Their mission is rooted in making manufacturing and its upstream and downstream processes more streamlined and effective, contributing to the creation of the future industrial world.

Trumpf's software solutions play a crucial role in realizing the vision of smart factories, promoting the integration of high-tech processes and industrial electronic products. The company's commitment goes beyond the present and focuses on unlocking technological possibilities for future generations. Trumpf's product portfolio covers a wide range of technologies, including lasers, machine tools, EUVs, and electronic products. These technologies serve as catalysts to inspire people to bring their creativity into life, turning once unimaginable things into tangible realities of the present and future.
The Lawrence Livermore National Laboratory located in California plays a crucial role in contributing to the global forefront of laser based fusion technology. One year ago, on December 5, 2022, LLNL successfully achieved nuclear fusion at the national ignition facility, achieving a net energy gain and achieving a breakthrough. Subsequently, researchers replicated this success three times, achieving higher energy production and making LLNL a key institution for promoting fusion energy.

In order to recognize the potential of laser fusion, the US Department of Energy has committed $42 million to three new laser fusion centers. These centers, collaborative enterprises involving academic institutions, national laboratories, and industrial companies will utilize their collective expertise to address fundamental challenges that hinder the economic feasibility and environmental sustainability of fusion energy.

Trumpf will contribute its professional knowledge to this project. Stewart McDougall, R&D director of TRUMPF Photonics located in Cranbury, New Jersey, emphasized the crucial role of modernizing diode lasers in achieving the goal of inertial fusion energy power plants. The goal is to replace outdated pump sources in the 1980s with modern diode lasers, thus requiring a significant increase in the global production capacity of semiconductor laser tubes. The role of TRUMPF is not limited to technological progress; It extends to collaboration with alliance partners to address key issues such as expansion, cost reduction, and standardization of diode pump sources.

Mr. McDougall emphasized the importance of a comprehensive approach, stating, "We will collaborate with alliance partners to address key issues such as scaling, cost reduction, and standardization of diode pump sources. We will also help develop a roadmap for the community. This four-year project aims to leverage Trumpf's over 20 years of experience in developing and commercializing industrial solid-state laser diode pump sources.".

Trumpf's professional knowledge covers the entire value chain, from materials to environment and reliability testing, as well as integration with laser systems. Mr. McDougall acknowledges that the development and profitability of nuclear fusion power plants have a long history, and it is estimated that they may take several decades to be operational and financially viable. As a consultant involved in this future oriented project, Trumpf demonstrated their expertise and emphasized the company's commitment to providing valuable insights in this pioneering field.

It is worth noting that although Trumpf is an indispensable partner in promoting laser fusion technology, it has not received direct funding for the project. The funding of the US government is consistent with the national goals set by the US President, aimed at showcasing the validation concept of various nuclear fusion power plants by 2032.

Source: Laser Net

Recomendaciones relacionadas
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    Ver traducción
  • Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

    Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.Ultra fast laser proc...

    2024-08-06
    Ver traducción
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    Ver traducción
  • Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

    The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or ...

    2024-08-05
    Ver traducción
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    Ver traducción