Español

Beyond Limits: The Amazing Power of Water in Laser Development

936
2024-02-26 14:20:25
Ver traducción

Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.
Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and ultrafast science.


Intense white laser projects a brilliant rainbow
However, this pursuit faces challenges, especially in selecting suitable nonlinear media. Although traditional solid materials are efficient, they are susceptible to optical damage under peak power conditions. Although gas media have resistance to damage, they are usually inefficient and technically complex.

Innovative solutions using water as a nonlinear medium
Researchers from South China University of Technology have recently taken non-traditional measures to treat water as a nonlinear medium. Water is abundant and inexpensive, and can be protected from optical damage even under the influence of high-power lasers. As reported in the Journal of Advanced Photonics in the Golden Open Access journal, water induced spectral broadening involves enhanced self phase modulation and stimulated Raman scattering, resulting in a supercontinuum white laser with a bandwidth of 435nm and 10dB, covering an impressive range of 478-913nm.

Progress in Cooperation between Water and CPPLN
To further innovate, researchers combined water with chirped periodically polarized lithium niobate (CPPLN) crystals, which are known for their powerful second-order nonlinear power. This cooperative relationship not only expands the frequency range of supercontinuum white laser, but also flattens its output spectrum. According to Professor Zhi Yuan Li, the senior author of the study, "The cascaded water CPPLN module provides a long lifespan, high stability, and low cost technical route for achieving 'three high' white lasers with strong pulse energy, high spectral flatness, and ultra wide bandwidth."

The results of the water CPPLN cooperation are expected. The pulse energy of this ultra wideband ultra continuous spectrum light source is 0.6 mJ, with a 10 dB bandwidth spanning one octave (413-907nm), and it has potential in ultrafast spectroscopy and hyperspectral imaging. Zhi Yuan Li observed, "It provides high resolution of physical, chemical, and biological processes at extreme spectral bandwidths with high signal-to-noise ratio. It opens up an efficient pathway to create long-lived, highly stable, and cost-effective white light lasers with strong pulse energy, high spectral flatness, and ultra wideband, paving the way for new possibilities in scientific research and application."

Source: Sohu

Recomendaciones relacionadas
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    Ver traducción
  • Gooch&Housego successfully acquires Phoenix Optical Technologies

    Recently, renowned precision optical technology manufacturer Gooch&Housego (G&H) announced the successful acquisition of Phoenix Optical Technologies, a precision optical manufacturer located in St. Asaf, Wales, UK. The acquisition transaction amounts to £ 6.75 million, which not only consolidates G&H's market position in the aerospace and defense sectors, but also significantly expa...

    2024-11-04
    Ver traducción
  • 150 kW Ultra High Power Laser Sensor Released

    Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely ...

    2024-12-27
    Ver traducción
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    Ver traducción
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Ver traducción