Español

Progress in the study of ultrafast electron dynamics using short light pulses

464
2024-01-08 14:53:56
Ver traducción

When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and previously unattainable temporal resolution.

The relevant paper is titled "Time Resolved Photoemission Electron Microscope on a ZnO Surface Using an Extreme Ultraviolet Attention Pulse Pair" and published in Advanced Physics Research.

Through these experiments, the research team has demonstrated the applicability of this method, which can be used to better understand the electronic behavior of electrons in nanomaterials and new solar cells. Researchers from Lund University in Sweden, including Professor Anne L'Huillier, one of the three Nobel laureates in physics last year, also participated in this study.

Here, this work demonstrates the use of spatial and energy resolved photoelectrons to perform attosecond interferometric measurements on zinc oxide (ZnO) surfaces. The combination of optical emission electron microscopy and near-infrared pump extreme ultraviolet probe laser spectroscopy resolved the instantaneous phase of the infrared field with high spatial resolution. The research results indicate that zinc oxide nuclear energy with low binding energy is very suitable for spatially resolved attosecond interferometry measurement experiments. A significant phase shift of the attosecond beat frequency signal was observed across the entire laser focus, attributed to the wavefront difference between the surface pump field and the probe field.

Figure 1: Characterization of the experimental setup.

In the experiment, the research team combined a special electron microscope, a light emission electron microscope (PEEM), with attosecond physics techniques. Scientists use extremely short duration light pulses to excite electrons and record their subsequent behavior. This process is very similar to the process of capturing rapid motion with a flash in photography.

As reported by the research group, similar experiments have yet to achieve the time accuracy required to track electronic motion. The motion speed of these tiny elementary particles is much faster than that of larger and heavier atomic nuclei. However, in this study, scientists combined the highly demanding techniques of light emission electron microscopy and attosecond microscopy without affecting spatial or temporal resolution.

Figure 2: Spectral results of zinc oxide surface.
Vogelsang said, "Now we can finally use attosecond pulses to study in detail the interaction between light and matter at the atomic level and in nanostructures.".

One factor contributing to this progress is the use of a light source that can generate a large number of attosecond pulse flashes per second - in this case, this light source can generate 200000 light pulses per second. Each flash releases an average of one electron from the surface of the crystal, allowing researchers to study their behavior without affecting each other. The more pulses generated per second, the easier it is to extract small measurement signals from the dataset.

Figure 3: Spatial resolved attosecond interferometry measurement of zinc oxide surface.

The experiment of this study was conducted in Anne L'Huillier's laboratory at Lund University in Sweden, which is one of the few research laboratories in the world with the necessary technical equipment for such experiments.

A similar experimental laboratory is currently being established at the University of Oldenburg. In the future, the two teams plan to continue conducting research to explore the behavior of electrons in various materials and nanostructures.

This work provides a clear approach for high spatial resolution attosecond interferometry measurements in the field of atomic scale surfaces, and opens the way for a detailed understanding of the interaction between nanoscale light and matter.

Source: Sohu

Recomendaciones relacionadas
  • Laser giant nLIGHT's preliminary performance forecast for the fourth quarter of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, released its preliminary performance forecast for the fourth quarter of 2024.According to disclosed information, nLIGHT expects its revenue for the fourth quarter of 2024 to be between $46 million and $48 million, lower than the estimated range of $49 million to $54 million when it released its third quarter results on...

    01-16
    Ver traducción
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    Ver traducción
  • The Indian medical laser market has entered a rapid growth mode

    According to industry forecasts, the medical laser market in India, especially in the field of medical aesthetics, is expected to be worth up to 71572 million rupees in fiscal year 2023. It is expected that this number will increase to 1.8358 billion rupees by fiscal year 2031, with a compound annual growth rate of 12.49%.Alma Medical, a global innovator in the field of medical lasers in Israel, h...

    2024-07-05
    Ver traducción
  • Intel installs the first EUV manufacturing tool that can emit lasers hotter than the sun

    Chip giant Intel announced that it has completed the assembly work of the world's first commercial high numerical aperture (NA) extreme ultraviolet lithography (EUV) scanner. This device greatly improves the resolution and feature scaling of next-generation chips by changing the optical design used to project printed images onto silicon wafers.This lithography equipment weighing 150 tons has been ...

    2024-04-22
    Ver traducción
  • University of Science and Technology of China Reveals High Precision Planarity Measurement of Cryogenic Arrays

    Professor Wang Jian, Deputy Chief Designer of the Low Temperature Array High Precision Planeness Survey Wide Area Sky Survey Telescope (WFST) announced by the University of Science and Technology of China, and teacher of the State Key Laboratory of Nuclear Detection and Nuclear Electronics, School of Physics, University of Science and Technology of China, is a research team of the Chinese Academy ...

    2023-08-14
    Ver traducción