Español

University of Science and Technology of China Reveals High Precision Planarity Measurement of Cryogenic Arrays

381
2023-08-14 15:34:28
Ver traducción

Professor Wang Jian, Deputy Chief Designer of the Low Temperature Array High Precision Planeness Survey Wide Area Sky Survey Telescope (WFST) announced by the University of Science and Technology of China, and teacher of the State Key Laboratory of Nuclear Detection and Nuclear Electronics, School of Physics, University of Science and Technology of China, is a research team of the Chinese Academy of Sciences (CAS) to carry out research on key technologies of the main focus camera. The research results were published in the IEEE Journal of Instrumentation and Measurement in July 2023.

A wide field of view camera is the core equipment of a wide field of view telescope. Due to the size limitations of a single sensor, it cannot meet the needs of a wide field of view camera with a large focal plane. Therefore, the key technology for the development of large field of view cameras lies in the splicing and assembly of large target detectors. High precision focal plane arrays require precise manufacturing and measurement. Given that detectors typically operate at low temperatures to reduce dark current, measurements need to be made at room and low temperatures. This ensures that the detector maintains excellent flatness under cold conditions, thereby improving the imaging quality of the detector.

Based on the current development status of astronomy at home and abroad, combined with the development trend of astronomical technology, China fully utilizes the professional knowledge and basic research role of existing research teams. After years of preparation and accumulation, China University of Science and Technology and the Zijinshan Observatory of the Chinese Academy of Sciences jointly proposed the construction of the 2.5-meter caliber telescope WFST, which is the most advanced celestial survey capability in the northern hemisphere. This effort aims to establish a leading position in time-domain astronomical observations.

A key component of WFST is its large focal plane splicing main camera. The scientific imaging of this camera consists of 9 9K images × Made by splicing 9K CCD chips, the designed imaging target diameter is D325mm. The surface flatness of the assembled image is less than PV20um. This makes it the largest and world leading product of its kind in China. The standard for the flatness of WFST's focal plane inlay is exceptionally strict. The main challenge in developing the main camera is to address high-precision measurement issues, especially in cold conditions. The team solved key technical challenges related to the main focusing camera. This includes vacuum cold packaging of detectors, high-precision measurement and assembly of large target detectors.

The team overcame the challenge of non-contact measurement with high flatness under cold conditions for high-precision measurement of large target detectors. They have developed a differential triangulation method based on laser triangulation, which is suitable for sensors in low-temperature packaging conditions. The measurement error under vacuum sealing shall not exceed 0.5%, and the repeated measurement accuracy can reach ± 2 μ M. On this basis, they completed the development of DTS measurement instruments and ultimately achieved the measurement of WFST main focus camera under low temperature conditions.
At present, the WFST main focus camera has been successfully developed and shipped to Cold Lake, where it will be installed and integrated with the telescope body for calibration and testing.

Source: Laser Network

Recomendaciones relacionadas
  • Scientists develop flat-topped laser beams to overcome Gaussian distribution limitations

    The beam emitted by almost all laser systems follows the Angle pattern of Gaussian distribution. The Gaussian irradiance distribution means that irradiance has a smooth peak at the center point and slowly declines toward the edge. In theory, the irradiance level of a Gaussian distribution can never reach zero, which means that the distribution can expand indefinitely. This phenomenon in the laser ...

    2023-08-04
    Ver traducción
  • Laser fusion breakthrough brings greater energy explosion

    Recently, scientists from the National Ignition Facility at Lawrence Livermore National Laboratory in California produced a burst of energy by bombarding hydrogen pellets with 192 laser beams, briefly reproducing the fusion process that powers the sun. This is a repeat of an experiment in December last year, but this time the scientists generated more energy, with a gain almost double that of the ...

    2023-09-26
    Ver traducción
  • How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

    Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.Gall...

    2024-06-12
    Ver traducción
  • The scientific research team of Shenzhen University of Technology has discovered a new mechanism of attosecond pulse coherent radiation

    Recently, a team of Professor Ruan Shuangchen and Professor Zhou Cangtao from Shenzhen University of Technology proposed for the first time internationally a physical solution based on the generation of attosecond pulses and subperiodic coherent light shock radiation from a superluminal plasma wake field, and explained a new coherent radiation generation mechanism dominated by collective electron ...

    2023-10-14
    Ver traducción
  • Kearns Launches 3-Axis Controlled UV Laser Marking Machine to the UK Market

    Recently, Keyence announced that it has delivered the MD-U series of 3-axis controlled UV laser marking machines to its UK customers. This product technology utilizes ultraviolet lasers with high absorption rates to perform cold labeling on various materials - a process that can be carried out under minimum thermal stress.UV laser is generated by passing a standard wavelength laser (1064nm) throug...

    2023-10-09
    Ver traducción