Español

DLR and Tesat laser terminals pave the way for high-speed data transmission from space

705
2023-11-02 15:16:04
Ver traducción

Due to the surge in the deployment of small satellites, the increasing congestion of data transmission has always been a persistent problem in the aerospace industry. The collaboration between the Communication and Navigation Research Institute of the German Aerospace Center and Tesat Spacecom GmbH and Co. KG TESAT provides a powerful solution. They successfully developed and tested OSIRIS4CubeSat, a compact laser communication terminal designed specifically for microsatellites, setting new standards in compact design and high-speed data transmission.

This success is the result of years of research in the field of optical satellite communication, "said Florian David, Director of DLR Communications and Navigation Research Institute. It showcases the astonishing potential of designing small, lightweight, and powerful optical satellite terminals. This is an important component of future satellite systems, such as for Earth observation or giant constellations.

For compact design
Setting standard cube satellites is becoming increasingly popular due to their standardized size and modular characteristics. Each cube shaped unit has a side length of 10 centimeters and can be modularized and expanded. The OSIRIS4CubeSat terminal complies with this standard, adopts a patented design, and uses electronic circuit boards as the mechanical foundation of optical components. The new design configuration achieves compactness without affecting performance, which is a significant leap for industries that prioritize cost-effectiveness.

The terminal was first launched on CubeL satellite as part of the PIXL-1 mission on June 24, 2021. Subsequent rigorous testing confirmed its reliability and error free functionality in space, proving that it is not just an experimental novelty.

Better than traditional radio systems
Data rate is a crucial aspect for any communication system, and the OSIRIS4CubeSat terminal will not disappoint people. It achieves a data rate of up to 100 megabits per second, which is superior to traditional radio systems. It is not affected by electromagnetic interference and eliminates channel crosstalk, which is a common drawback of traditional wireless channels.

This highlights the enormous opportunities brought by collaboration between German research and industry, "said Siegbert Martin, Chief Technology Officer of TESAT.

This technological advantage is particularly important as it simplifies the typically complex approval processes of regulatory agencies such as the Federal Network Agency and the International Telecommunication Union.

Data Security and Integration
In order to transmit data to Earth, the terminal utilized an encoding program developed by DLR. These programs ensure zero loss transmission and protect data from atmospheric interference. It is worth noting that the CubeL satellite and its OSIRIS4CubeSat terminal have been successfully integrated into the existing infrastructure of the German Space Operations Center. This marks a crucial step towards simplifying the operation of future microsatellite missions.

Business preparation
Even before the completion of the PIXL-1 task, Tesat had incorporated the technology into its commercial product line. These terminals are now available under the names "CubeLCT" and "SCOT20", not only experimental but also ready for a wider range of industrial applications. This enables the technology to be used for various future satellite missions to meet research and commercial needs.

The launch of the OSIRIS4CubeSat terminal has solved multiple challenges from data congestion to regulatory bottlenecks, making it an indispensable part of the next generation satellite system. Its success marks an increasing synergy between research programs and commercial applications, marking a significant step forward in the rapidly developing aerospace field.

Source: Laser Network

Recomendaciones relacionadas
  • The semiconductor Institute has made progress in the study of high power and low noise quantum dot DFB single-mode lasers

    Recently, the team of Yang Tao-Yang Xiaoguang, a researcher at the Key Laboratory of Materials Science of the Institute of Semiconductors of the Chinese Academy of Sciences, and Lu Dan, a researcher, together with Ji Chen, a professor at the Zhijiang Laboratory of Zhejiang University, have made important progress in the research of high-power, low-noise quantum dot DFB single-mode lasers.Distribut...

    2023-09-05
    Ver traducción
  • SEI and Matik showcase the latest laser technology at a joint printing exhibition

    SEI Laser, a leading manufacturer of laser cutting systems, and its North American distributor Matik, Inc. will showcase SEI Laser's three most popular machines at the upcoming Joint Printing Expo. Visit booth C2811 on the C floor of the Joint Printing Expo to watch live demonstrations of MERCURY, X-TYPE, and Labelmaster.MERCURY is the ideal choice for cutting everything from paper and cardboard t...

    2023-10-17
    Ver traducción
  • German research institute develops a new nanosecond laser process

    Recently, the Fraunhofer Institute (HHI) has developed a technology for processing aluminum alloy materials using reactive gas assisted nanosecond lasers, which can be used to produce electronic box samples for spacecraft manufacturing. This development project is part of the NanoBLAST project, in close collaboration with thermal engineering company Azimut Space GmbH, aimed at manufacturing surfac...

    2024-09-10
    Ver traducción
  • French silicon optical company Scintil realizes the integration of III-VI DFB lasers and amplifiers with standard silicon optical technology

    Recently, French silicon photonics company Scintil Photonics announced an exciting collaboration, successfully integrating III-V-DFB lasers and amplifiers with standard silicon photonics technology in the production of Israeli semiconductor company Tower Semiconductor. This milestone collaboration marks a crucial step for Scintil in strengthening its supply chain, bringing new possibilities to com...

    2024-03-05
    Ver traducción
  • Yangtze Welcomes 8th Overseas Production Site

    On August 8, local time, Jalisco, Mexico welcomed the grand opening of Yangtze Optics Mexico Cable S.A. de C.V., marking the eighth overseas production base of Yangtze Optical Fiber & Cable Co. ("Yangtze Fiber Optics") has successfully set up its eighth overseas production base in its 36-year development history, further advancing its internationalization strategy blueprint. Today, we are pr...

    2024-08-14
    Ver traducción