Español

ELI and LLNL strengthen transatlantic large-scale laser cooperation

379
2025-07-09 10:33:21
Ver traducción

Lawrence Livermore National Laboratory (LLNL) and the Extreme Light Infrastructure (ELI) European Research Infrastructure Consortium (ERIC) have announced that they have signed a new Memorandum of Understanding. This builds on their existing decade of strategic collaboration to advance high-power laser technology.

“We are looking forward to expanding our existing collaborations with ELI on areas such as ultrabright high-repetition-rate sources for enhanced radiography, fusion and plasma physics research,” said James McCarrick, LLNL program director for High Energy Density and Photon Systems.

“This includes developing technologies with multiple applications such as high-repetition-rate target systems and diagnostics that can survive sustained operation close to one of the highest intensity and highest average power lasers in the world.”

ELI and LLNL have a long-standing partnership that began with LLNL building and delivering the L3 HAPLS (High-Repetition-Rate Advanced Petawatt Laser System) to the ELI Beamlines Facility near Prague in the Czech Republic. L3 HAPLS is designed to deliver petawatt-class pulses with energy of at least 30 joules and durations below 30 femtoseconds, at a 10 Hz repetition rate.

The system is already extensively used, capitalizing on its reliability and high repetition rate, while a clear plan is in place to continue ramping up its performance toward the full technical design parameters. These capabilities are essential for driving secondary sources like electrons, ions and x-rays, and for advancing the understanding of laser-plasma interactions.

The L3 HAPLS is a central feature of ELI's scientific offerings and provides a powerful tool for exploring high-intensity laser experiments with relevant applications to fields like materials science, medical therapy and non-destructive analysis. It is also particularly well suited for exploratory research in laser-driven fusion.

ELI as ‘proving ground’
ELI also has already acted as a proving ground for LLNL machine learning and optimization technologies. Last year, LLNL researchers performed an experiment in cooperation with ELI staff that integrated machine learning and optimization technologies to enhance the performance of the L3 system. This effectively boosted precision and efficiency, paving the way for even greater advancements in high-power laser experiments and research. The success of this experiment opens new avenues in laser-plasma interaction physics.

The close cooperation with the U.S. scientific user community is evident in the growing demand for ELI’s facilities within the framework of ELI’s user program. With experiment proposal submissions increasing and a rising user base, the U.S. stands out as the country with the third-highest number of proposals in the past five mission-based access calls. This underscores the significance of transatlantic cooperation in advancing laser science and highlights the strong and ongoing engagement of U.S.-affiliated researchers in ELI’s user program.

“We are pleased to see the active engagement of U.S.-based researchers in experiments at ELI, leveraging the advanced technology, including the L3 HAPLS system,” said Allen Weeks, ELI ERIC Director General. “This collaboration exemplifies the strength of international partnerships in driving forward scientific research and technological advancements. Together ELI and LLNL are shaping the future of laser science.”

The new agreement lays the foundation for the exchange of staff, internship opportunities for students and postdocs and fostering a culture of knowledge-sharing and intellectual collaboration. These initiatives will not only strengthen the ties between the two institutions but also expand the scope of joint research initiatives. Through this continued collaboration, ELI and LLNL are committed to addressing the challenges of tomorrow and shaping the future of laser science and technology.

Source: optics.org

Recomendaciones relacionadas
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Ver traducción
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    Ver traducción
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    Ver traducción
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    Ver traducción
  • Microcomb launches a simplified design for powerful lasers based on chips

    Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty ...

    2024-05-25
    Ver traducción