Español

ELI and LLNL strengthen transatlantic large-scale laser cooperation

682
2025-07-09 10:33:21
Ver traducción

Lawrence Livermore National Laboratory (LLNL) and the Extreme Light Infrastructure (ELI) European Research Infrastructure Consortium (ERIC) have announced that they have signed a new Memorandum of Understanding. This builds on their existing decade of strategic collaboration to advance high-power laser technology.

“We are looking forward to expanding our existing collaborations with ELI on areas such as ultrabright high-repetition-rate sources for enhanced radiography, fusion and plasma physics research,” said James McCarrick, LLNL program director for High Energy Density and Photon Systems.

“This includes developing technologies with multiple applications such as high-repetition-rate target systems and diagnostics that can survive sustained operation close to one of the highest intensity and highest average power lasers in the world.”

ELI and LLNL have a long-standing partnership that began with LLNL building and delivering the L3 HAPLS (High-Repetition-Rate Advanced Petawatt Laser System) to the ELI Beamlines Facility near Prague in the Czech Republic. L3 HAPLS is designed to deliver petawatt-class pulses with energy of at least 30 joules and durations below 30 femtoseconds, at a 10 Hz repetition rate.

The system is already extensively used, capitalizing on its reliability and high repetition rate, while a clear plan is in place to continue ramping up its performance toward the full technical design parameters. These capabilities are essential for driving secondary sources like electrons, ions and x-rays, and for advancing the understanding of laser-plasma interactions.

The L3 HAPLS is a central feature of ELI's scientific offerings and provides a powerful tool for exploring high-intensity laser experiments with relevant applications to fields like materials science, medical therapy and non-destructive analysis. It is also particularly well suited for exploratory research in laser-driven fusion.

ELI as ‘proving ground’
ELI also has already acted as a proving ground for LLNL machine learning and optimization technologies. Last year, LLNL researchers performed an experiment in cooperation with ELI staff that integrated machine learning and optimization technologies to enhance the performance of the L3 system. This effectively boosted precision and efficiency, paving the way for even greater advancements in high-power laser experiments and research. The success of this experiment opens new avenues in laser-plasma interaction physics.

The close cooperation with the U.S. scientific user community is evident in the growing demand for ELI’s facilities within the framework of ELI’s user program. With experiment proposal submissions increasing and a rising user base, the U.S. stands out as the country with the third-highest number of proposals in the past five mission-based access calls. This underscores the significance of transatlantic cooperation in advancing laser science and highlights the strong and ongoing engagement of U.S.-affiliated researchers in ELI’s user program.

“We are pleased to see the active engagement of U.S.-based researchers in experiments at ELI, leveraging the advanced technology, including the L3 HAPLS system,” said Allen Weeks, ELI ERIC Director General. “This collaboration exemplifies the strength of international partnerships in driving forward scientific research and technological advancements. Together ELI and LLNL are shaping the future of laser science.”

The new agreement lays the foundation for the exchange of staff, internship opportunities for students and postdocs and fostering a culture of knowledge-sharing and intellectual collaboration. These initiatives will not only strengthen the ties between the two institutions but also expand the scope of joint research initiatives. Through this continued collaboration, ELI and LLNL are committed to addressing the challenges of tomorrow and shaping the future of laser science and technology.

Source: optics.org

Recomendaciones relacionadas
  • Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the tit...

    2024-06-05
    Ver traducción
  • Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

    Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this bat...

    2023-09-25
    Ver traducción
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Ver traducción
  • Laser Photonics Corporation receives MF-1020 order

    Recently, Laser Photonics Corporation (LPC) announced that it has partnered with Foon Technologies to receive its second order for the DefenseTech MRL (MF-1020) handheld cleaning system, which was facilitated by a distributor.The DTMF-1020 air-cooled handheld pulse laser cleaning equipment adopts dual axis technology, simplifying the maintenance process. The system will be used by the Navy Command...

    02-27
    Ver traducción
  • Accurate measurement of neptunium ionization potential using new laser technology

    Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy te...

    2024-05-11
    Ver traducción