Español

Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

806
2023-09-25 16:02:52
Ver traducción

Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.

This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this batch of plans (an "important project of common interest in Europe") will support the company's independent investment, research, and development of innovative optoelectronic components there.

(Image source: ams Osram)

In its recent announcement, Osram stated that it is "working to strengthen its development and manufacturing base in Regensburg for future investments". On September 18th, at a related event of the Federal Ministry of Economic Affairs and Climate Action in Germany, the company introduced its project initiated within the scope of IPCEI microelectronics and communication technology.

For the planned public funding, the German Federal Ministry of Economic Affairs and Climate Action emphasizes the significant importance of the project within Europe and supports cooperation with the Bavarian Ministry of Economic Affairs, Regional Development, and Energy for related investments. The statement stated: "300 million euros will mainly be invested in research and development activities for innovative optoelectronic semiconductors and their manufacturing processes, thereby creating 400 new high-tech jobs.

In addition, Osram will also invest in new clean rooms and laboratory facilities for research, development, and experimental production. These facilities will be used for applications such as UV-C LEDs for disinfection, near-infrared emitters for autonomous LiDAR, and applications in the context of Industry 4.0.

Another special focus will be on microLEDs for new types of displays. Osram pointed out that "automation and artificial intelligence play an important role in Regensburg, enabling us to open up Xintiandi in production facilities." The first 8-inch wafer production pilot assembly line is currently under construction, in order to launch cost-effective mass production of highly innovative microLEDs in the near future.

Aldo Kamper, CEO of Osram, said, "By expanding our development activities in the field of optoelectronic semiconductors, we can create space for innovation and accelerate the time to market of our products. At the same time, our investment is a clear commitment to Regensburg as an industrial center, Bavaria as a high-tech base, and Europe as a breeding ground for innovation.

He added, "In Regensburg, we create new, energy-efficient products and production processes to drive digitization, thereby supporting European green agreements and European autonomy in the semiconductor industry. Under our future oriented 'Rebuild the Base' plan, we will continue to establish our market leading core competitiveness and shape the future of the semiconductor market from this Bavarian city.

Hubert Aiwanger, Minister of Economic Affairs of Bavaria, said, "Osram represents the high-tech manufacturing in Regensburg. As the Bavarian government, we are interested in participating in the financing of the IPCEI project. This is fully in line with our intention to further expand Bavaria as a top international base in the semiconductor industry. Every euro has received good investment and will create new job opportunities in a highly innovative environment.

Source: Ofweek

Recomendaciones relacionadas
  • Future oriented strategic technology: integrated manufacturing of large composite materials with additive and subtractive materials and its key elements

    Thermowood has developed a large-scale additive and subtractive material manufacturing equipment, LSAM, and successfully printed tooling molds on site that can be used for aerospace composite material forming, demonstrating its low-cost and rapid response to composite material manufacturing capabilities to the public.As a large-scale component additive manufacturer, Thermowood has developed a near...

    2024-04-19
    Ver traducción
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    Ver traducción
  • LiDAR solutions provider Cepton acquired by KOITO

    On July 29, 2024, Cepton, a provider of high-performance LiDAR solutions, announced the signing of the final agreement for its acquisition, making it the acquiring company's subsidiary in the United States.Image source: CeptonAccording to the agreement, the acquirer is the internationally renowned automotive lighting giant KOITO, which was established in 1915 and has a history of over a hundred ye...

    2024-08-01
    Ver traducción
  • The United States has successfully developed a full 3D printed electric spray engine

    The fully 3D printed electric spray engine is suitable for small satellite in orbit maneuver, and its production cost is only a small part of that of traditional thrusters.Image source: Massachusetts Institute of Technology, USAThe Massachusetts Institute of Technology team recently demonstrated an electric spray engine made entirely of 3D printing technology, which can be propelled by emitting ...

    02-20
    Ver traducción
  • The new generation of special optical fibers is suitable for the application of quantum technology

    Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.The highly anticipat...

    2024-08-02
    Ver traducción