Español

Laser Photonics Corporation receives MF-1020 order

396
2025-02-27 10:10:32
Ver traducción

Recently, Laser Photonics Corporation (LPC) announced that it has partnered with Foon Technologies to receive its second order for the DefenseTech MRL (MF-1020) handheld cleaning system, which was facilitated by a distributor.

The DTMF-1020 air-cooled handheld pulse laser cleaning equipment adopts dual axis technology, simplifying the maintenance process. The system will be used by the Navy Command that ordered the first set of equipment.

LPC Executive Vice President John Armstrong stated that the second order fully demonstrates the reliability and effectiveness of our technology. The headquarters requires a powerful and reliable laser system, and we are proud to meet their needs. Our laser system is fundamentally changing the maintenance process of the navy, providing cleaner, safer, and more efficient solutions.

This order highlights the success of LPC and Fonon Technologies in providing high-quality laser solutions and consolidates their growing reputation in the defense industry. LPC's DefenseTech equipment can effectively remove rust, coatings, and residues without damaging the underlying surface, ensuring that the equipment is always available and extending its service life. These environmental solutions do not require the use of chemicals and grinding media, greatly reducing secondary waste and operator health risks.

Source: OFweek

Recomendaciones relacionadas
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Ver traducción
  • Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

    Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.The importance of micr...

    2023-09-27
    Ver traducción
  • Exail acquires laser company Leukos

    On January 6, 2025, Exail acquired Leukos, a laser company specializing in advanced laser sources for metrology, spectroscopy, and imaging applications. The financial terms of this acquisition have not been disclosed yet. Leukos will operate as a subsidiary of Exail, retaining its product portfolio and brand. This acquisition combines Leukos' advanced technologies, including pulsed micro lasers,...

    01-08
    Ver traducción
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Ver traducción
  • Van's updates the manufacturer of laser-cut parts

    Van's Aircraft has responded to reports of ruptured dented parts found in AirVenture's latest kit. These defects are caused by external suppliers changing the process of laser cutting parts. From February 2022 to June 2023, Van's moved some parts from traditional punch manufacturing to an outside supplier that can laser cut rivet holes. The move is designed to increase the company's throughput and...

    2023-08-04
    Ver traducción