Español

Laser Photonics Corporation receives MF-1020 order

989
2025-02-27 10:10:32
Ver traducción

Recently, Laser Photonics Corporation (LPC) announced that it has partnered with Foon Technologies to receive its second order for the DefenseTech MRL (MF-1020) handheld cleaning system, which was facilitated by a distributor.

The DTMF-1020 air-cooled handheld pulse laser cleaning equipment adopts dual axis technology, simplifying the maintenance process. The system will be used by the Navy Command that ordered the first set of equipment.

LPC Executive Vice President John Armstrong stated that the second order fully demonstrates the reliability and effectiveness of our technology. The headquarters requires a powerful and reliable laser system, and we are proud to meet their needs. Our laser system is fundamentally changing the maintenance process of the navy, providing cleaner, safer, and more efficient solutions.

This order highlights the success of LPC and Fonon Technologies in providing high-quality laser solutions and consolidates their growing reputation in the defense industry. LPC's DefenseTech equipment can effectively remove rust, coatings, and residues without damaging the underlying surface, ensuring that the equipment is always available and extending its service life. These environmental solutions do not require the use of chemicals and grinding media, greatly reducing secondary waste and operator health risks.

Source: OFweek

Recomendaciones relacionadas
  • Webasto joins hands with Tongkuai to lead the new trend of electric vehicle technology

    In the process of selecting electric vehicles, the effectiveness of the heating system is often overlooked. However, this system is crucial for providing a warm and comfortable driving environment and removing frost and fog from winter windows. More importantly, it can also improve battery efficiency, as the battery performs best within a specific temperature range.Unlike internal combustion engin...

    2024-06-12
    Ver traducción
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    Ver traducción
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    Ver traducción
  • The Innovation Road of Laser Welding Automation Production Line for New Energy Vehicle Motor stators

    With the increasing global attention to environmental protection and sustainability, new energy vehicles have become an important trend in the automotive industry. In this context, the production method of the core component of new energy vehicles - the motor stator - has also undergone profound changes. Welding, as a key manufacturing process, has brought disruptive innovation to the manufacturin...

    2024-02-28
    Ver traducción
  • Making Infrared Light Visible: New Equipment Utilizes 2D Materials to Convert Infrared Light

    Infrared imaging and sensing technology can be used in various fields, from astronomy to chemistry. For example, when infrared light passes through a gas, sensing changes in light can help scientists identify specific properties of the gas. The use of visible light may not always achieve this sensing.However, existing infrared sensors are bulky and inefficient. In addition, due to the use of infra...

    2024-06-24
    Ver traducción