Español

Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

518
2023-10-12 15:17:42
Ver traducción

An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale laser pulses in ambient air".

From gravitational wave astronomy, quantum metrology, ultrafast science, to semiconductor manufacturing, controlling the intensity, shape, direction, and phase of coherent light is crucial in many fields. However, modern photonics may involve parameter regions where wavelength or high optical power limits control due to absorption, light induced damage, or optical nonlinearity in solid media. Here, researchers suggest using high-strength ultrasound customized gaseous media to avoid these limitations.

Source: DESY Science Communication Laboratory
Researchers demonstrated the implementation of this method by effectively deflecting ultrashort laser pulses in ambient air using ultrasound without the need for transmitting solid media. At a peak optical power of 20 GW, the deflection efficiency of the researchers exceeded 50% while maintaining excellent beam quality, exceeding the limit of previous solid-state based acoustooptic modulation by about three orders of magnitude. The researchers' methods are not limited to laser pulse deflection; The gas-phase photon scheme controlled by sound waves may be used to implement new optical components such as lenses or waveguides, which can effectively resist damage and operate in new spectral regions.

Schematic diagram of angle deflection of ultrasonic assisted laser beam in air.

This innovative technology utilizes sound waves to modulate the air in the area where the laser beam passes through. Researchers have generated an invisible grating using acoustic density waves.

With the help of special speakers, researchers have formed areas of high and low density in the air, forming stripe gratings. Due to the difference in air density, the light in the Earth's atmosphere bends, so this density pattern acts as a grating, changing the direction of the laser beam.

The relationship between experimental setup and deflection efficiency with sound power and time.


In the first laboratory test, the efficiency of reorienting strong infrared laser pulses in this way was 50%. According to the numerical model, higher efficiency should be achieved in the future.

The research team believes that this technology has great potential in the field of high-performance optics. In the experiment, researchers used infrared laser pulses with a peak power of 20 gigawatts, which is equivalent to the power of approximately 2 billion LED bulbs. This type of laser with even higher power levels can be used for material processing, nuclear fusion research, or the latest particle accelerators.

AO diffraction of ultra short laser pulses at high peak power.
Scientists emphasize that the principle of acoustic control of lasers in gases is not limited to the generation of optical gratings. It is likely to be applied to other optical components such as lenses and waveguides.

The technology of directly deflecting light in ambient air has been confirmed, opening up promising applications, especially as a fast switch for high-power lasers. Modern optics is almost entirely based on the interaction between light and solid matter. The researchers' methods have opened up a new research direction.

Related paper links:
Yannick Schrödel et al, Acousto-optic modulation of gigawatt-scale laser pulses in ambient air, Nature Photonics (2023). DOI: 10.1038/s41566-023-01304-y
https://phys.org/news/2023-10-air-deflect-lasers.html

Source: Yangtze River Delta Laser Alliance

Recomendaciones relacionadas
  • Coherent launches 532 nm HyperRapid NXT picosecond laser for ultra precision manufacturing of thin film solar cells

    The leader of material processing industry lasers, Cohen Corporation, announced yesterday the launch of its new HyperRapid NXT industrial picosecond laser, with a working wavelength of 532 nm and an average power of 100 W, which can achieve ultra precision manufacturing of thin film solar cells.The second generation solar cells, which are expected to achieve a leap in energy efficiency, are mainly...

    2024-01-25
    Ver traducción
  • Tower and Fortsense have announced the launch of their highly advanced 3D imager for LiDAR

    Recently, Gaota Semiconductor announced the successful development of an advanced 3D imager based on dToF technology for LiDAR applications. The newly developed product FL6031 is based on Tower's 65nm Stacked BSI CIS platform and has pixel level hybrid bonding function. It is the first in a series of products aimed at meeting the needs of numerous deep sensing applications in the automotive, consu...

    2023-09-14
    Ver traducción
  • The 2025 Munich Laser Exhibition has come to a successful conclusion

    Around 1,400 exhibitors and 44,000 visitors created “optimistic atmosphere”, says Messe München.Laser World of Photonics 2025 in Munich, Germany, came to a close on Friday, having set a new record for number of exhibitors and new innovations, said the organizer Messe München. Last week, 1,398 exhibitors from 41 countries presented the full spectrum of photonic technologies to around 44,000 visitor...

    06-30
    Ver traducción
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Ver traducción
  • SuperLight Launches "First" Portable Broadband Laser

    Supercontinuum spectrum laser developer SuperLight Photonics has launched the so-called "first revolutionary portable broadband laser" - SLP-1000. Its wide spectral output provides a light source for industrial and medical imaging applications as well as spectroscopy.Supercontinuum spectrum lasers, also known as broadband lasers, provide high bandwidth while maintaining high coherence and low nois...

    2023-11-02
    Ver traducción