Español

WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

672
2023-10-10 14:20:06
Ver traducción

The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.

Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including abandoned satellites, are accumulating around Earth. The more debris in orbit, the higher the risk of some of it colliding with manned and unmanned space assets. He said he believes the best opportunity to prevent these collisions is to install multiple lasers on space platforms. Artificial intelligence driven lasers can be manipulated and work together to quickly respond to fragments of any size.

Lee is an assistant professor of mechanical and aerospace engineering at the Benjamin M. Statler School of Engineering and Mineral Resources, and a potential breakthrough research recipient of NASA's prestigious Early Career Teacher Award in 2023. NASA is supporting Lee's rapid response debris removal research with an annual funding of $200000 for a period of three years.

This work is still in its early stages, and the research team is currently verifying that their proposed algorithm for running laser systems will be an effective and cost-effective solution. But long-range vision is "the active execution of orbital maneuvers and collaborative resolution of orbital debris by multiple space-based lasers," Li said. This may lead to timely collision avoidance with high-value spatial assets.

Our goal is to develop a reconfigurable space-based laser network and a set of algorithms that will become enabling technologies to make this network possible and maximize its advantages.

If a natural object, such as a meteoroid, collides with an artificial object, such as the wreckage of a carrier rocket, the resulting debris can spread quickly enough, and even small fragments like paint may have the power to pierce the side of observation or telecommunications satellites or the International Space Station.

This has become an urgent issue as space becomes increasingly chaotic. In particular, the Earth's low orbit has attracted commercial telecommunications systems such as SpaceX's Starlink, which use satellites to provide users with broadband internet. Low orbit is also the location of satellites used for weather forecasting and land cover analysis, and it is the hub for deep space exploration.

The increase in the number of objects increases the risk of collisions, endangers manned missions, and endangers high-value scientific and industrial missions, "Li said. He added that collisions in space can trigger a domino effect called "Kessler Syndrome," which can cause a chain reaction and increase the risk of further collisions, "making space unsustainable and hostile.

Other researchers are developing debris removal technologies such as hooks, harpoons, nets, and cleaners, but these technologies are only applicable to large debris. Lee's method should be able to handle fragments of almost any size.

The algorithm suite that Lee's team will develop may be suitable for lasers installed on large satellites, or may provide power for lasers living on their own dedicated platforms. As part of his research, he will evaluate the various forms that laser networks may take. Regardless of the method, the technology will be able to make many decisions on its own, independently execute actions, and set priorities.

The system will determine which laser combination targets which fragments while ensuring that the resulting trajectory remains collision free.

When a laser beam emits a fragment, it will not forget it. On the contrary, fragments are pushed into new orbits, usually through laser ablation. This means that the laser beam evaporates a small portion of the debris, generating a high-speed plasma plume that pushes the debris off its orbit.

The process of laser ablation and photon pressure can cause changes in the velocity of target debris, ultimately changing the size and shape of its orbit. This is where the motivation to use laser comes into play. The ability to change the trajectory of debris can be effectively controlled through laser networks to push or detach space debris, avoiding potential catastrophic events such as collisions, "Li explained.

A system using multiple lasers can create multiple opportunities to interface with debris and lead to more effective trajectory control. Multiple lasers can simultaneously act on a single target, with a higher intensity spectrum, changing its trajectory in a way that a single laser cannot.

Lee will collaborate with Scott Zemerick, Chief Systems Engineer at TMC Technologies in Fairmont, to validate all models and algorithms developed throughout the project in the "Digital Twin Environment". This will ensure that the product is ready for flight software, Lee said.

Source: Laser Network

Recomendaciones relacionadas
  • Screen Innovation Launches Short Focus Elevated Electric Laser TV Projection Screen

    Screen Innovations has added a short focal lift electric screen solution to its component and material series, meeting the growing demand for large but hidden displays in small media rooms and company boards.Unlike traditional projection systems that require sufficient distance from the projector to the screen or perform best in a darkroom, pop-up laser TVs are only a few inches away from short fo...

    2023-10-27
    Ver traducción
  • Researchers use machine learning to optimize high-power laser experiments

    High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting syst...

    2024-05-24
    Ver traducción
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    Ver traducción
  • Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

    On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and pow...

    2023-12-15
    Ver traducción
  • Fulu and Longview begin design work on laser melting devices

    Longview Fusion Energy Systems and Fluor have taken another step towards commercialization of laser fusion power plants.According to the memorandum of understanding signed by the two companies, Fulu will design the factory for Longview Fusion Energy Systems. The two companies collaborated and signed a memorandum of understanding in 2023 to leverage Fulu's experience in developing and constructing ...

    2024-03-13
    Ver traducción