Español

WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

202
2023-10-10 14:20:06
Ver traducción

The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.

Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including abandoned satellites, are accumulating around Earth. The more debris in orbit, the higher the risk of some of it colliding with manned and unmanned space assets. He said he believes the best opportunity to prevent these collisions is to install multiple lasers on space platforms. Artificial intelligence driven lasers can be manipulated and work together to quickly respond to fragments of any size.

Lee is an assistant professor of mechanical and aerospace engineering at the Benjamin M. Statler School of Engineering and Mineral Resources, and a potential breakthrough research recipient of NASA's prestigious Early Career Teacher Award in 2023. NASA is supporting Lee's rapid response debris removal research with an annual funding of $200000 for a period of three years.

This work is still in its early stages, and the research team is currently verifying that their proposed algorithm for running laser systems will be an effective and cost-effective solution. But long-range vision is "the active execution of orbital maneuvers and collaborative resolution of orbital debris by multiple space-based lasers," Li said. This may lead to timely collision avoidance with high-value spatial assets.

Our goal is to develop a reconfigurable space-based laser network and a set of algorithms that will become enabling technologies to make this network possible and maximize its advantages.

If a natural object, such as a meteoroid, collides with an artificial object, such as the wreckage of a carrier rocket, the resulting debris can spread quickly enough, and even small fragments like paint may have the power to pierce the side of observation or telecommunications satellites or the International Space Station.

This has become an urgent issue as space becomes increasingly chaotic. In particular, the Earth's low orbit has attracted commercial telecommunications systems such as SpaceX's Starlink, which use satellites to provide users with broadband internet. Low orbit is also the location of satellites used for weather forecasting and land cover analysis, and it is the hub for deep space exploration.

The increase in the number of objects increases the risk of collisions, endangers manned missions, and endangers high-value scientific and industrial missions, "Li said. He added that collisions in space can trigger a domino effect called "Kessler Syndrome," which can cause a chain reaction and increase the risk of further collisions, "making space unsustainable and hostile.

Other researchers are developing debris removal technologies such as hooks, harpoons, nets, and cleaners, but these technologies are only applicable to large debris. Lee's method should be able to handle fragments of almost any size.

The algorithm suite that Lee's team will develop may be suitable for lasers installed on large satellites, or may provide power for lasers living on their own dedicated platforms. As part of his research, he will evaluate the various forms that laser networks may take. Regardless of the method, the technology will be able to make many decisions on its own, independently execute actions, and set priorities.

The system will determine which laser combination targets which fragments while ensuring that the resulting trajectory remains collision free.

When a laser beam emits a fragment, it will not forget it. On the contrary, fragments are pushed into new orbits, usually through laser ablation. This means that the laser beam evaporates a small portion of the debris, generating a high-speed plasma plume that pushes the debris off its orbit.

The process of laser ablation and photon pressure can cause changes in the velocity of target debris, ultimately changing the size and shape of its orbit. This is where the motivation to use laser comes into play. The ability to change the trajectory of debris can be effectively controlled through laser networks to push or detach space debris, avoiding potential catastrophic events such as collisions, "Li explained.

A system using multiple lasers can create multiple opportunities to interface with debris and lead to more effective trajectory control. Multiple lasers can simultaneously act on a single target, with a higher intensity spectrum, changing its trajectory in a way that a single laser cannot.

Lee will collaborate with Scott Zemerick, Chief Systems Engineer at TMC Technologies in Fairmont, to validate all models and algorithms developed throughout the project in the "Digital Twin Environment". This will ensure that the product is ready for flight software, Lee said.

Source: Laser Network

Recomendaciones relacionadas
  • NASA will demonstrate laser communications from the space station

    NASA's ILLUMA-T payload communicates with the LCRD via laser signals.NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to...

    2023-09-02
    Ver traducción
  • Laser photonics helps simplify maintenance processes in the mining industry

    Laser Photonics Corporation (LPC) is a leading global developer of industrial laser systems for cleaning and other material processing applications, emphasizing the critical applications of its industrial laser cleaning systems in the mining industry.Laser Photonics provides a user-friendly, ethical, cost-effective, and time-saving solution for professionals in the mining industry to maintain heav...

    2024-06-14
    Ver traducción
  • IPG Q1 revenue of $252 million, co-founder and new CEO of Jiaobang

    Recently, IPG Photonics, a high-performance fiber laser supplier in the United States, released its first quarter financial report as of March 31, 2024.The financial report shows that IPG Photonics revenue in the first quarter was 252 million US dollars, a year-on-year decrease of 27%; The net profit was 19 million US dollars, a year-on-year decrease of 75%. The change in foreign exchange rate res...

    2024-05-07
    Ver traducción
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    Ver traducción
  • Coherent Company Announces the Launch of High Power Non Cooled G10 Pumped Laser Module for Submarine and Ground Applications

    Coherent, a leading supplier of high-performance optical network solutions, announced today the launch of a new high-power non cooled pump laser module based on the latest G10 series semiconductor laser tube technology. These new modules are specifically developed for high reliability submarine applications as well as single chip and dual chip ground applications.The new non cooled pump laser modu...

    2024-03-23
    Ver traducción