Español

Sivers Photonics has received a $1 million order for advanced optical sensing products in fields such as LiDAR and industrial applications

408
2023-11-30 14:11:56
Ver traducción

Sivers Semiconductors AB announced that its subsidiary Sivers Photonics has received a new order worth $1 million for advanced optical sensing products from three customers in the fields of LiDAR, Medical, and Industrial.

In the first half of the fourth quarter of 2023, new orders were received from several US clients, which will lead to the manufacturing of advanced lasers and optical amplifiers for critical applications. It is expected that most deliveries will be completed throughout 2024.

Sivers Photonics has world-class production facilities in Glasgow, UK, with over 20 years of experience in designing and manufacturing customized III-V compound semiconductor devices. The company is a leading supplier of laser light sources in the silicon photonics industry, collaborating with a range of clients ranging from Fortune 100 companies to financially strong and high growth startups.

These latest orders are due to the company's design of next-generation products for autonomous vehicle and smart factories, innovative medical devices and equipment, and a variety of new applications in all walks of life, thus increasing the demand for Sivers lasers.

These production orders indicate that the mature and emerging optical sensing market will continue to experience strong organic growth, and further validate the technical capabilities of the Sivers Photonics UK wafer manufacturing plant.

"We have set a mid-term goal to increase product sales from the current 30% of revenue to over 80% by 2026. Therefore, this is one of the many product orders we expect to see to ensure our sustained growth, which will be driven by an increase in product revenue share in the coming years," said Anders Storm, CEO of Sivers Semiconductors.

Source: Laser Net

Recomendaciones relacionadas
  • EV Group launches EVG 850 NanoClean system for ultra-thin chip stacking for advanced packaging

    EV Group, a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets, yesterday launched the EVG850 NanoClean layer release system, which is the first product platform to adopt EVG's revolutionary NanoClean technology.The EVG850 NanoClean system combines infrared lasers with specially formulated inorganic release materials, and can ...

    2023-12-08
    Ver traducción
  • Efficient implementation of laser welding automation using modern measurement technology

    Ensuring the integrity and quality of the welded hair clip is crucial in the assembly of electric motors. Usually, 160 to 220 hair clips are welded to each motor, and the accuracy of these welds directly affects the overall quality of the stator and motor. The traditional method of detecting these welds is difficult to balance the requirements of safety and accuracy, which often leads to damage to...

    2024-06-13
    Ver traducción
  • Photon chips help drones fly unobstructed in weak signal areas

    With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.Using this quantum technology, scientists aim to provide the same ...

    2023-10-28
    Ver traducción
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    Ver traducción
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    Ver traducción