Español

Laser gyroscopes measure small changes in daytime length on Earth

944
2023-09-19 14:36:29
Ver traducción

Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.

The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolonging a day by a few milliseconds. Many of these changes are well-known. For example, one of the changes is caused by tidal forces, which are generated by the gravitational pull of the moon and sun, causing the Earth to deform. Scientists know how to predict these effects on Earth's rotation. However, other changes caused by fluctuations in the Earth's atmosphere and water bodies are more difficult to estimate.

The gyroscope, known as the "G", is located at the Wetzl Geodetic Observatory in Germany and aims to measure these small impacts. This is the so-called ring laser gyroscope. In it, the laser beam propagates around a square ring of 4 meters on each side. One bundle rotates clockwise, while the other bundle rotates counterclockwise. The wavelength of a beam of light that is aligned with the direction of Earth's rotation will be elongated, while a beam of light that propagates against the direction of Earth's rotation will contract. When combined, two beams of light with slightly different wavelengths will generate a "beat" signal, similar to two slightly out of tune notes.

Researchers reported in the September 18th issue of the journal Nature Photonics that this rhythm reveals the speed of Earth's rotation, allowing G to measure the length of a day with an accuracy of over one millisecond.

Other methods of measuring the Earth's rotational speed rely on external references. For example, telescopes can use the position of distant quasars (bright cores of active galaxies) to determine the degree of Earth's rotation. But these technologies provide the average results within a day. G measures the rotation rate every few hours. Its measurements were conducted in an underground laboratory.

Physicist Ulrich Schreiber of the Technical University of Munich stated that there is no need to understand the external world, "because gyroscopes measure absolute rotation." This means that the rotation it measures is not relative to other references, but rather the rotation itself.

Scientists have previously measured the Earth's rotation and tilt using other laser gyroscopes (SN: 7/17/20). But they have not yet measured the length of a day to the high accuracy achieved by G. The gyroscope is also stable enough to operate continuously for several months, allowing researchers to sort out changes that occur over a long time scale.

The function of G is unique: "This measurement is considered impossible for other detectors," said physicist Angela Di Virgilio of the National Institute of Nuclear Physics in Pisa, Italy, who was not involved in the new study. Therefore, they obtained some results from this impressive instrument, which is a good thing.

These measurements can help scientists improve their models of Earth's air circulation and ocean currents. In the future, scientists hope to measure more elusive effects through improved ring laser gyroscopes. According to Albert Einstein's general theory of relativity, rotating planets drag spacetime. A ring laser gyroscope may one day perceive the twists and turns of time and space.

Source: Laser Network

Recomendaciones relacionadas
  • Fulu and Longview begin design work on laser melting devices

    Longview Fusion Energy Systems and Fluor have taken another step towards commercialization of laser fusion power plants.According to the memorandum of understanding signed by the two companies, Fulu will design the factory for Longview Fusion Energy Systems. The two companies collaborated and signed a memorandum of understanding in 2023 to leverage Fulu's experience in developing and constructing ...

    2024-03-13
    Ver traducción
  • Fraunhofer ISE develops a faster laser system for wafer processing

    By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform lase...

    2023-12-23
    Ver traducción
  • The globalization of three-color laser technology will be further accelerated

    Recently, the IFA2023 Consumer Electronics Show in Berlin, Germany opened, Hisense exhibited "three-color laser projection family bucket" attracted the attention of media and tourists from all over the world.Since Hisense's young fashion brand Vidda launched a series of three-color laser projection, its accumulation based on three-color laser technology is competing globally and has become a...

    2023-09-04
    Ver traducción
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    Ver traducción
  • Lightmatter announces the first 16 wavelength bidirectional link on single-mode fiber

    Lightmatter, a Boston-based startup developing silicon photonics hardware aimed at AI and high-performance computing, has announced a 16-wavelength bidirectional Dense Wavelength Division Multiplexing optical link operating on one strand of standard single-mode (SM) fiber.Powered by Lightmatter’s Passage interconnect and Guide laser technologies, this development “shatters previous limitations in ...

    08-22
    Ver traducción