Español

Fraunhofer ISE develops a faster laser system for wafer processing

386
2023-12-23 14:00:27
Ver traducción

By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.

Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform laser processing at the highest speed without compromising on the size of the structure or processing field.

In order to produce photovoltaic cells from wafers, wafers must be metallized. In this step, the fine channels are grooved at the top of the cell. Silver paste enters the channel and is then used as a conductor track. The speed at which the channel enters the silicon wafer is crucial for battery production to further reduce production costs.

The laser provided by Fraunhofer ISE can draw 1800 lines per second. This is 10 to 20 times faster than so-called galvanometer scanners, which are typically used for this purpose. The laser has a high repetition rate of 10 megahertz and a maximum pulse energy of 5.6 microjoules.

This laser can also process M12 format wafers with a side length of 210 millimeters. The laser engraving channel is only 15 microns wide. This is 30% finer than the currently commercially used ultraviolet laser. Compared to the very common infrared laser, the channel of the new laser is three times larger. A finer channel can reduce the use of silver paste, thereby helping to further reduce production costs.

"The unique feature of the demonstrator design is that large workpieces can be processed very quickly and the structural dimensions are small," said Jale Schneider, project manager at Fraunhofer ISE. The idea that you can only have two of these three characteristics at the same time - large image field, rapid processing, and fine structure - is deeply rooted in the laser material processing industry. With this system, we have achieved these three aspirations simultaneously.

German laser expert Edgewave GmbH has developed a prototype. Moewe Optical Solutions built a polygon scanner for this project. At Fraunhofer ISE, the team combined a polygonal scanner, laser, and axis for beam guidance into a system. The group now hopes to research new processes to increase production.

Source: Laser Net

Recomendaciones relacionadas
  • BenQ Launches V5000i 4K RGB Laser TV Projector

    Display solution brand BenQ recently launched the 4K RGB laser TV projector V5000i.The V5000i focuses on providing the pinnacle of innovation, unparalleled color accuracy, and excellent audio quality, elevating the home theater world to unprecedented heights. It is the perfect replacement for large screen televisions, particularly suitable for well lit spaces such as spacious living areas, "the co...

    2023-10-10
    Ver traducción
  • New Meltio robot unit provides large-scale line laser DED

    Meltio is an expert in the field of cost-effective linear laser metal deposition additive manufacturing technology (directed energy deposition, DED) and has launched the new Meltio Robot Cell, a turnkey metal additive manufacturing solution equipped with industrial robotic arms and the recently launched slicing software Meltio Space.The new hardware aligns with the vision of this Spanish company t...

    2023-09-22
    Ver traducción
  • Experimental verification of driving pressure enhancement and smoothing for hybrid driven inertial confinement fusion on a 100 kJ laser device

    The research teams from the Laser Fusion Research Center of the Chinese Academy of Engineering Physics, the Beijing Institute of Applied Physics and Computational Mathematics, Peking University, and Shenzhen University of Technology reported experimental verification of the driving pressure enhancement and smoothing of hybrid driven inertial confinement fusion on a 100 kJ laser equipment.The relev...

    2023-09-25
    Ver traducción
  • The efficiency of crystalline silicon solar cells has exceeded 27% for the first time, and Longi's research results have been published in Nature

    Recently, Longi Green Energy Technology Co., Ltd. (hereinafter referred to as "Longi"), as the first unit, published a research paper titled "Silicon heterojunction back contact solar cells by laser patterning" online in the journal Nature, reporting for the first time the research results of breaking through 27% of the photoelectric conversion efficiency of crystalline silicon cells through full ...

    2024-10-18
    Ver traducción
  • BOFA launches the latest generation of high-temperature 3D printing filtration technology

    BOFA has consolidated its position as a market leader in additive manufacturing of portable smoke and particle filtration systems with the latest generation of 3D PrintPRO technology designed specifically for high-temperature processes.3D PrintPRO HT focuses on the 230V market and can filter high-temperature particles, gases, and nanoparticles emitted during polymer processing in the printing room...

    2024-04-15
    Ver traducción