Español

Application of laser technology in electric vehicles to improve safety and reduce rusting

156
2025-10-13 10:45:05
Ver traducción

Trumpf has developed a laser application to improve the safety of electric vehicles, which can be used for adhesive and coating preparation in battery production, as well as anti-corrosion of aluminum components. This not only enhances safety but also prevents rusting of the vehicle.

“Selective surface processing with lasers is a clean and fast alternative to chemical processes in the automotive industry, for example to achieve high adhesive strength for adhesives or coatings,” said Volkan Yavuz, responsible for laser surface processing at Trumpf.

At this week’s parts2clean trade fair in Stuttgart, Germany (7-9 October), Trumpf has presented its portfolio of manufacturing solutions for surface processing, such as the TruPulse 5050 nano short-pulse laser and the PFO33 scanner optics, as well as sample components for adhesive preparation and corrosion protection.

 



Volkan Yavuz with Trumpf’s PFO 33 scanner


Safe batteries for electric cars

Laser technology can help to manufacture safe batteries in electric cars. Manufacturers must coat or laminate battery cells before gluing them into battery modules or battery trays. The coating protects against short circuits and environmental influences, thereby increasing the safety and service life of the battery cells.

Before applying the coating and adhesive, manufacturers clean the cells and certain areas of the battery trays with short-pulse lasers. The extremely short light pulses hit the surface of the material without damaging the material itself.

“Our lasers reliably remove oils, rust, oxides, and other residues and ensure long-term stable adhesion of the coating and adhesive, without the use of aggressive chemicals or mechanical rubbing,” said Yavuz.

The automotive industry is increasingly relying on large aluminum castings for car body construction. This is called mega- or gigacasting. During casting, these parts are given a protective layer that protects them from corrosion. However, further processing, such as milling, makes the components susceptible to corrosion, especially when they are later exposed to road salt in winter driving.

Trumpf has developed a solution for this: the laser homogenizes the surface by selectively remelting a few micrometers and then rapidly quenching it. This makes the aluminum components resistant to corrosion. In tests in which the parts processed in this way were sprayed with salt water for hours, they showed no signs of crevice corrosion.

“This technology is not a dream of the future: it is used not only for gigacasting components, but also for housings for electric motors for electric cars,” said Yavuz.

To process large surfaces, such as aluminum components, users employ the PFO33 scanner optics with a pulsed laser from Trumpf’s TruMicro Series 7000. The mirrors of the PFO33 move the laser pulses across the component at speeds of up to several meters per second.

“This enables short cycle times, which are ideal for series production in the automotive industry,” said Yavuz. Local extraction removes smoke, particles, and aerosols that are produced during laser processing and could interfere with the machining process.

Sustainable processing

Laser-based surface processing offers significant environmental advantages over conventional methods. The absence of chemicals reduces environmental impact and disposal costs. Contactless processing minimizes tool wear and material waste. In addition, energy-efficient, targeted laser processing reduces the CO2 footprint in manufacturing.

Source: optics.org

Recomendaciones relacionadas
  • Phil Energy from South Korea wins mysterious order from European battery manufacturer

    Recently, Phil Energy, a South Korean secondary battery equipment manufacturer, successfully won an order from a European battery manufacturer to manufacture the next generation 46 series cylindrical battery manufacturing equipment. At present, both parties have signed a supply agreement for this cooperation, but have not disclosed the customer name and order size to the public. It is understood...

    2024-07-25
    Ver traducción
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    Ver traducción
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    Ver traducción
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    Ver traducción
  • SPIE Optics and Photonics 2025: Kyle Myers from Puente elected as SPIE Chair

    The founder and principal of Puente Solutions Kyle J. Myers has been elected to serve as the 2026 Vice President of SPIE, the international society for optics and photonics. With her election, Myers joins the SPIE presidential chain. She will serve as president-elect in 2027, and as the Society’s president in 2028. Newly-elected: Myers, McNally, Rubinsztein-Dunlop, Wade, Medicus, and ErdmannTh...

    08-08
    Ver traducción