Español

Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

342
2023-10-17 13:55:41
Ver traducción

Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.

The EX Fusion Liquid Metals Collaborative Research Group was established with the support of the Tokyo University of Science and Technology Open Innovation Platform, with the aim of providing support for research management, intellectual property strategy, and commercialization. The ultimate goal is to promote the implementation of research results developed by the collaborative research group.

In the urgent demand for energy supply that does not emit greenhouse gases, laser fusion reactors have won high expectations globally as a sustainable energy source. Laser nuclear fusion is different from nuclear fusion in that it is a technology that induces nuclear fusion reactions through laser irradiation of fuel, thereby generating energy. It utilizes seawater resources and provides a safe and sustainable energy supply option.

In addition, it also has the ability to flexibly adapt to fluctuations in electricity demand. In the long run, this technology is expected to become a key player in driving the global decarbonization process. However, despite a significant amount of research and development work being carried out worldwide to address technological challenges and improve energy efficiency, commercial laser fusion reactors have not yet been achieved.

EX Fusion, a company that develops laser fusion reactors, has reached a project collaboration with Tokyo Institute of Technology, which conducts academic research on liquid metal fluids. The collaborative research group aims to construct the concept of liquid fuel blankets suitable for laser fusion reactors. It will also develop necessary liquid blanket component technology and conduct extensive joint research to design blanket simulation circuits.

The insights gained from this collaborative research and the liquid metal technology group are expected to be useful not only in the field of nuclear fusion, but also in a wide range of fields such as liquid metal mirrors and environmental purification technologies.
EX Fusion is a start-up company that develops key technologies for laser fusion reactors, including lasers and fuel targets. The company was named one of the "Top 100 Outstanding Risk Enterprises" in 2023 by the major Japanese economic magazine "Toyo Economy". EX Fusion and Tokyo Institute of Technology are leading the way in the research of energy conversion systems utilizing liquid metal fluids. The two sides plan to collaborate to jointly solve technical application problems to maximize the social application of these technologies.

Collaborative research
The collaborative research group will utilize the professional technical knowledge accumulated by Tokyo Institute of Technology to improve the large-scale synthesis technology of high-purity liquid lithium lead fuel breeding materials necessary for commercial reactor operation. It will also develop the final optical system for laser irradiation systems using liquid metal technology.

Conceptual Design of Commercial Laser Fusion Reactors
By integrating these technologies, the collaborative research team will design a blank simulation loop. In addition, it will also consider applying the liquid metal technology developed through collaborative research to environmental purification technologies such as low melting point metal mirrors for deep space exploration and seawater desalination. Both sides aim to accelerate the early realization of laser fusion energy through cooperation.

Future plans
In the next three years, the goal of the collaborative research group is to promote high-purity synthesis methods for liquid fuel cultivation materials, which is key to the laser fusion fuel cycle. The development of this technology aims to support global fusion.

Source: Sohu

Recomendaciones relacionadas
  • German research institute develops a new nanosecond laser process

    Recently, the Fraunhofer Institute (HHI) has developed a technology for processing aluminum alloy materials using reactive gas assisted nanosecond lasers, which can be used to produce electronic box samples for spacecraft manufacturing. This development project is part of the NanoBLAST project, in close collaboration with thermal engineering company Azimut Space GmbH, aimed at manufacturing surfac...

    2024-09-10
    Ver traducción
  • The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

    The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been...

    2023-10-28
    Ver traducción
  • Turn to 4-inch wafers! Dutch Photonics Integrated Circuit Enterprise Announces Production Expansion and Price Reduction

    Recently, SMART Photonics, a Dutch photonic integrated circuit manufacturer, announced a major decision to transfer its entire production capacity from 3-inch wafers to 4-inch silicon substrates, thereby expanding the production scale of photonic chips and significantly reducing chip prices.According to the company, SMART Photonics is one of the first photonic integrated circuit foundries to provi...

    2024-02-03
    Ver traducción
  • Intel installs the first EUV manufacturing tool that can emit lasers hotter than the sun

    Chip giant Intel announced that it has completed the assembly work of the world's first commercial high numerical aperture (NA) extreme ultraviolet lithography (EUV) scanner. This device greatly improves the resolution and feature scaling of next-generation chips by changing the optical design used to project printed images onto silicon wafers.This lithography equipment weighing 150 tons has been ...

    2024-04-22
    Ver traducción
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    Ver traducción