Español

Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

526
2024-03-22 15:11:22
Ver traducción

Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medium for terahertz waves, and there have been no reports of its generation of terahertz waves. In 2017, experiments found that when the thickness of a liquid film or the diameter of a liquid beam decreased to the micrometer level, the radiation of terahertz waves was greater than absorption. This opens up a new direction in the study of liquid terahertz waves.

In recent years, there have been experimental reports in the field of liquid terahertz waves, but many phenomena observed in experiments are different from the results of other media. For example, a monochromatic laser field can effectively generate liquid terahertz waves, while a gas medium requires a specific phase difference of a bicolor laser; The yield of liquid terahertz waves is directly proportional to the energy driving the laser, while in gas media it is a square relationship; The yield of liquid terahertz waves increases with the increase of laser pulse width within a certain range, while the opposite is true for gas media; Under the drive of dual color laser, non modulated signals appear in liquid terahertz waves, but similar signals are not observed in gas media. Theoretical research on complex and disordered liquid phase systems has always been a challenge, and the above phenomena are difficult to explain with existing theories. Researchers can only explain some macroscopic experimental results under high light intensity based on previous plasma models and interface effects.

Recently, Bian Xuebin, a researcher at the Institute of Precision Measurement Science and Technology Innovation of the Chinese Academy of Sciences, and Li Zhengliang, a doctoral candidate, proposed a displacement current model that generates liquid terahertz waves, which can systematically explain a series of anomalies observed in the above experiments. The physical image of the micro mechanism model is shown in the figure: the disordered structure of the liquid localizes the electron wave packet, and the energy of the outer electrons of different molecules is affected by the environment and moves. Under the action of strong field lasers, the outer electrons of different molecules undergo transitions, generating displacement currents in asymmetric systems. The energy difference of these transitions is in the terahertz energy region, which in turn radiates terahertz waves. Meanwhile, this work demonstrates that the quantum effects of atomic nuclei play a crucial role and predicts that terahertz radiation can be used to study the isotopic effects of liquids.

The above achievements are another theoretical advancement of Bian Xuebin's team in the field of liquid phase strong field ultrafast dynamics research, following the high-order harmonic statistical fluctuation model. The related research findings are titled Terahertz radiation induced by shift currents in liquids and published in the Journal of the National Academy of Sciences (PNAS) in the United States. The research work was supported by the National Key Research and Development Program, the National Natural Science Foundation of China, and the Chinese Academy of Sciences Youth Team Program for Stable Support in Basic Research.

Schematic diagram of liquid terahertz wave generation

Source: OFweek

Recomendaciones relacionadas
  • Developing miniaturized laser technology: This company has secured $5 million in financing

    Recently, high-performance laser supplier Skylark Lasers announced that it has raised $5 million in investment to further advance its efforts in miniaturized laser technology.Skylark Lasers is established at the center of the Scottish Photonics Cluster, focusing on the design and production of compact diode pumped solid-state (C-DPSS) lasers with the purest spectral characteristics, providing high...

    2023-11-02
    Ver traducción
  • The rare decay of the Higgs boson may point to physics beyond the standard model

    Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quan...

    2024-01-26
    Ver traducción
  • TRUMPF helps upgrade the automation of 3D laser processing for automotive thermoforming

    (Dechengen, Germany, March 24, 2025) - TRUMPF Group in Germany has now provided end customers with a fully automated one-stop solution for laser processing systems. With this solution, customers can not only shorten the production cycle, but also effectively reduce the cost of 3D laser material processing. Our laser equipment has excellent production efficiency. Now, through the automation upgrade...

    04-02
    Ver traducción
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    Ver traducción
  • ComNav Technologies introduces Mars Pro Laser RTK

    ComNav Technology Ltd. has introduced the Mars Pro Laser RTK, the latest addition to its Universe series GNSS receiver product line, which includes the Venus Laser RTK and Mars Laser RTK. The GNSS receiver is suitable for the land surveying, GIS and construction industries with its innovative features.Mars Pro's laser mode facilitates the use of conventional GNSS receivers in areas where signals a...

    2023-09-13
    Ver traducción