Español

SPIE Optics and Photonics 2025: Kyle Myers from Puente elected as SPIE Chair

12
2025-08-08 14:26:09
Ver traducción

The founder and principal of Puente Solutions Kyle J. Myers has been elected to serve as the 2026 Vice President of SPIE, the international society for optics and photonics. With her election, Myers joins the SPIE presidential chain. She will serve as president-elect in 2027, and as the Society’s president in 2028.

 



Newly-elected: Myers, McNally, Rubinsztein-Dunlop, Wade, Medicus, and Erdmann


The 2025 SPIE President Peter de Groot, Zygo Corp. scientist emeritus, made the announcement along with other SPIE election results at this year’s Annual General Meeting of the Society on 5 August, during SPIE Optics + Photonics, in San Diego. Terms begin on 1 January 2026.

Myers, founder and principal at Puente Solutions, is also currently a fellow at the Hagler Institute for Advanced Study at Texas A&M University. Her areas of technical research across her career in government, industry, and academia have included medical imaging and biomedical optics; signal processing and AI/ML; vision science and perception; and technical translation from ideation to market authorization.

From 1987 until 2021, Myers worked at the FDA’s Center for Devices and Radiological Health; her final role there was as Director of the Division of Imaging, Diagnostics, and Software Reliability.

An SPIE Fellow, Myers was the recipient of the 2024 SPIE Harrison H. Barrett Award in Medical Imaging, and a 2006 recipient of the Joseph W. Goodman Book Writing Award. She sits on the Society’s Strategic Planning Committee and its Publications Committee. From 2018-2023, she served on the SPIE Board of Directors.

She has participated as an SPIE Awards Program Chair, an associate editor for the Journal of Medical Imaging, and, from 1996-2005, as part of the program committee for the Image Processing Conference at SPIE Medical Imaging. Myers is currently on the program committee for the Image Perception, Observer Performance, and Technology Assessment conference at SPIE Medical Imaging. She is also a fellow of AAPM, AIMBE, and Optica, and a member of the National Academy of Engineering.

Myers was featured in the 2014 SPIE Women in Optics Planner where she stated: “I have devoted my career to advancing approaches for evaluation of medical imaging devices from a subjective practice to an objective and quantitative science; my lab develops methods for evaluating novel medical imaging devices and provides independent, objective data regarding device performance.”
“This is a type of lab science that is not done elsewhere. It is extremely rewarding to have a research job that is concretely assisting in getting new medical products to patients as quickly as possible, based on solid scientific evidence of their benefits.”

“Through SPIE we are working for more than the advancement of optics and photonics technologies — we are working for the betterment of the human condition,” said Myers. “I look forward to serving SPIE as we work together to do even more to educate, empower, grow, and support optics and photonics professionals around the world.”

Other SPIE electees

Alongside Myers, University of Rochester Professor Julie Bentley will serve as the 2026 SPIE President while Cather Simpson of the University of Auckland and Orbis Diagnostics, will serve as President-Elect. Jim McNally, CEO of StratTHNK Associates, was elected to serve as the 2026 SPIE Secretary/Treasurer.

The following newly-elected Society Directors will serve three-year terms from 2026-2028:

Halina Rubinsztein-Dunlop, professor of physics at the University of Queensland and deputy director of the Australian Research Council’s Center of Excellence in Quantum Biotechnology.
Jessica Wade, research fellow and lecturer at Imperial College London.
Kate Medicus, CEO and owner of Ruda Optical.
Rainer Erdmann, CEO and founder of PicoQuant.

The SPIE nominating committee accepts recommendations for the election slate on an ongoing basis. Directors, who serve a three-year term, are expected to attend and participate in three board meetings each year.

Source: optics.org

Recomendaciones relacionadas
  • Japan and Germany jointly develop ultra high speed laser material deposition technology

    Makino Machine Tool Company, headquartered in Tokyo, Japan, and Fraunhofer Institute for Laser Technology (ILT), headquartered in Aachen, Germany, have collaborated to combine ultra-high speed laser material deposition (EHLA) and near net shape additive manufacturing (EHLA3D) with a five axis CNC platform. The new system developed can efficiently produce, coat, or repair complex geometric shapes o...

    2024-10-25
    Ver traducción
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    Ver traducción
  • Laser blasting promises to solve global plastic problem

    Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.This discovery has the potential to improve the way we handle plastics that...

    2024-07-16
    Ver traducción
  • Reshaping the Sky: Laser Scanning Drones Innovate Data Collection

    Imagine soaring above the Earth, the world unfolds in patterns and reliefs, and the terrain whispers its secrets in the wind. Now imagine capturing these whispers and translating them into a digital language to draw our world map with unprecedented accuracy. Welcome to the forefront of laser scanning drones, a technological ballet in the sky where the fusion of flight and laser precision is reshap...

    2024-04-07
    Ver traducción
  • More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

    μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.It is understood that ...

    2023-11-01
    Ver traducción