Ελληνικά

Devices based on optical thermodynamics can guide light without the need for switches

515
2025-10-15 10:29:36
Δείτε τη μετάφραση

Researchers from Ming Hsieh's Department of Electrical and Computer Engineering at the University of Southern California have designed the first optical device that follows the emerging optical thermodynamic framework.

The work, reported in Nature Photonics, introduces a new way of routing light in nonlinear systems—meaning systems that do not require switches, external control, or digital addressing. Instead, light naturally finds its way through the device, guided by simple thermodynamic principles.

Universal routing is a familiar engineering concept. In mechanics, a manifold valve directs inputs to a chosen outlet. In digital electronics, a Wi-Fi router or an Ethernet switch in a data center directs information from many input channels to the correct output port.

When it comes to light, the same problem is more challenging. Conventional optical routers rely on complex arrays of switches and electronic control to toggle pathways. These approaches add technical difficulty, while limiting speed and performance. The photonics team at USC’s Viterbi School of Engineering has now shown that there is another way. Their idea can be likened to a marble maze that arranges itself.

Normally, you’d have to lift barriers and guide a marble step-by-step to make sure it reaches its destination—the right hole. In the USC team’s device, however, the maze is built so that no matter where the marble is dropped, it will roll on its own toward the right place. This is exactly how light behaves: it finds the correct path naturally, by following the principles of thermodynamics.

 



Principle of “optical thermodynamics” that routes light without switches


Potential impact

The implications of the new approach extend beyond the laboratory. As computing and data processing continue to push the limits of traditional electronics, various companies—including chip designers such as NVIDIA and others—are exploring optical interconnects as a way to move information faster and more efficiently.

By providing a natural, self-organizing way to direct light signals, however, optical thermodynamics could accelerate the development of such technologies. Beyond chip-scale data routing, the framework may also influence telecommunications, high-performance computing, and even secure information processing, offering a path toward devices that are both simpler and more powerful.

Nonlinear multimode optical systems are often dismissed as chaotic and unpredictable. Their intricate interplay of modes has made them among the hardest systems to simulate—let alone design for practical use. Yet, precisely because they are not constrained by the rules of linear optics, they harbor rich and unexplored physical phenomena.

Recognizing that light in these systems undergoes a process akin to reaching thermal equilibrium, the USC researchers developed a theory of “optical thermodynamics”. This framework captures how light behaves in nonlinear lattices using analogs of familiar thermodynamic processes such as expansion, compression, and even phase transitions.

Light routes itself

The principle is inspired by thermodynamics. Just as a gas undergoing what is known as a Joule-Thomson expansion redistributes its pressure and temperature before naturally reaching thermal equilibrium, light in the USC device experiences a two-step process: first an optical analog of expansion, then thermal equilibrium. The result is a self-organized flow of photons into the designated output channel – without any need for external switches.

“Beyond routing, this framework could also enable entirely new approaches to light management, with implications for information processing, communications, and the exploration of fundamental physics,” said lead author, Hediyeh M. Dinani, a Ph.D. student in the Optics and Photonics Group lab at USC Viterbi.

The Steven and Kathryn Sample Chair in Engineering, and Professor of Electrical and Computer Engineering at USC Viterbi Demetrios Christodoulides added, “What was once viewed as an intractable challenge in optics has been reframed as a natural physical process—one that may redefine how engineers approach the control of light and other electromagnetic signals.”

Source: optics.org

Σχετικές προτάσεις
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Δείτε τη μετάφραση
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    Δείτε τη μετάφραση
  • The market accounts for up to 70%! Meere is continuously expanding its market layout

    According to Korean media reports, Meere, a semiconductor and display equipment manufacturer from South Korea, is continuously expanding its presence in the high stack semiconductor market, including its HBM business.In fact, Meere itself is the world's top manufacturer of display edge grinding mechanisms, with a market share of up to 70%. It is based on its accumulation of display microfabricatio...

    2024-06-25
    Δείτε τη μετάφραση
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Δείτε τη μετάφραση
  • Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the tit...

    2024-06-05
    Δείτε τη μετάφραση