Deutsch

Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

801
2025-02-18 14:58:56
Übersetzung anzeigen

On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang Daily reporters.


Huang Wei, Director of HGTECH Laser Semiconductor Product Line, inspects silicon wafers in the laboratory


At present, he is leading the research and development of laser-induced micro hole equipment. Once applied on advanced packaging substrate production lines, it will achieve chip manufacturing for 5G communication, MEMS (Micro Electro Mechanical Systems), RF components, biological imaging, and biosensing. In the future, the Chinese will be able to use glass substrates instead of some traditional silicon substrates in advanced packaging applications, which can be described as a new way. Huang Wei said, "We often use the line from 'Ne Zha' to encourage each other: If there is no way forward, we will take a path.

The just held city wide science and technology innovation conference proposed to deepen the deep integration of industry, academia, research and application led by enterprises, focus on major industrial needs, and carry out technological research and development. My team and I feel that we are working more vigorously! "Huang Wei said." From 0 to 1, innovation is the key, and from 1 million to 1 million, innovation is also the key. The industrial innovation joint laboratory he works for is to solve the equipment urgently needed by the industry. We don't make 'prototypes' lying in the exhibition hall for people to visit, but instead focus on tackling large-scale production of' one million 'and ultimately achieving stable, reliable, and efficient' chip manufacturing on glass substrates'.

For this purpose, Huang Wei and team members with an average age of 30 move to the laboratory, supplier, and customer sites every week to verify various unit technologies and develop complete equipment. All parties involved are laboratory members.

Collaborating to accomplish big things significantly reduces communication costs, "Huang Wei explained. Each unit technology in this equipment needs to be customized and developed according to customer needs to ensure the production of chip products that are truly needed by segmented industries in the future. I communicate every day, solve engineering problems every day, and the pace is very fast. I can't help but jog while walking. As soon as I start brainstorming and come back to my senses, the scheduled meeting time has exceeded half, and new ideas are still coming up crazily.

It is reported that the Industry Innovation Joint Laboratory is led by HGTECH Technology, and has been established by HGTECH Laser, Huazhong University of Science and Technology, Hubei Jiufengshan Laboratory, Hubei Optics Valley Laboratory, Wuhan Huari Precision Laser Co., Ltd., Wuhan Yunling Optoelectronics Co., Ltd., Changfei Advanced Semiconductors (Wuhan) Co., Ltd., Wuhan HGTECH Technology Investment Management Co., Ltd., and other units. Semiconductor laser equipment such as hidden cutting, annealing, and testing equipment have been included in the research and development projects.

Source: laserfair

Ähnliche Empfehlungen
  • EO Technologies from South Korea enters the glass substrate processing market

    Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass sub...

    2024-06-18
    Übersetzung anzeigen
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    Übersetzung anzeigen
  • Researchers have proposed a new idea for quasi particle driven ultra bright light sources, which can be used in various applications from non-destructive imaging to chip manufacturing

    An international team of scientists is rethinking the fundamental principles of radiation physics, aiming to create ultra bright light sources. In a new study published in Nature Photonics, researchers from the Higher Institute of Technology in Lisbon, Portugal, the University of Rochester, the University of California, Los Angeles, and the Optical Applications Laboratory in France proposed the us...

    2023-10-24
    Übersetzung anzeigen
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Übersetzung anzeigen
  • The United States is expected to use "AI+lasers" to deal with space debris in the future

    Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deploye...

    2023-10-20
    Übersetzung anzeigen