Deutsch

Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

901
2024-01-31 13:58:14
Übersetzung anzeigen

Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.

Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semiconductor lasers, diamond Raman lasers, and fiber lasers. Among these three types, fiber lasers are an excellent choice for generating 1.2 μm band lasers due to their simple structure, good beam quality, and flexible operation.

Researchers led by Professor Pu Zhou from the National University of Defense Technology in China are interested in high-power fiber lasers in the 1.2μm band. Most of the current high-power fiber lasers are ytterbium-doped fiber lasers in the 1 μm band, and the maximum output of the 1.2 μm band is limited to 10 watts.

Their research, titled "High-Power Tunable Raman Fiber Laser in the 1.2 μm Band," was published in Frontiers in Optoelectronics.

Their idea is to use the stimulated Raman scattering effect in passive optical fibers to obtain high-power laser generation in the 1.2μm band. The stimulated Raman scattering effect is a third-order nonlinear effect that converts photons to longer wavelengths.

By exploiting the stimulated Raman scattering effect in phosphorus-doped optical fiber, the researchers converted the high-power ytterbium-doped fiber in the 1 μm band to the 1.2 μm band. A Raman signal with a power of 735.8 W was obtained at 1252.7 nm, which is the highest output power ever reported for a 1.2 μm band fiber laser.

Source: Laser Network


Ähnliche Empfehlungen
  • Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale la...

    2023-10-12
    Übersetzung anzeigen
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    Übersetzung anzeigen
  • OPO laser testing optical components

    Optical parametric oscillator laser tests fibers and components to characterize the spectral response of optical components, thereby providing a competitive advantage in the optical industry.OPO lasers have long been used in complex testing and measurement applications, such as mass spectrometry, photoacoustic imaging, and spectroscopy. Now, these "tunable" pulse lasers are being used to facilitat...

    2024-02-20
    Übersetzung anzeigen
  • US blue laser company Nuburu plans to raise nearly $65 million in funding

    Recently, Nuburu, a high-power industrial blue light laser company in the United States, announced that the company has agreed to a new financing arrangement worth up to $65 million.This agreement was reached between Nuburu and the Delaware hedge fund Liquous LP, which claims to provide a "customized liquidity solution". According to the terms of the agreement, Nuburu will first receive an initial...

    2024-10-11
    Übersetzung anzeigen
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    Übersetzung anzeigen