Deutsch

Eoptolink launches optical transceivers for immersion cooling

495
2024-03-26 14:12:09
Übersetzung anzeigen

Eoptolink Technology has expanded its product portfolio to meet the new market of optical transceiver modules operating in environments using immersion cooling.

The Eoptolink EOLO-138HG-5H-SYMR is an optical transceiver for the 800G OSFP DR8, which can be completely immersed in a 2-phase liquid cooling environment. The EOLO-138HG-02-SYMR is an 800G OSFP DR8+. This transceiver has fiber optic tail fibers that can be connected to non flooded infrastructure. Immersion cooling solutions are a growing niche market as they significantly reduce the energy required to cool data center equipment, thereby lowering operating costs. At the same time, the working temperature of network devices and their sub components is lower, which prolongs their service life and reduces the failure rate.

"We are delighted to showcase our 800G OSFP DR8 module for immersion cooling at OFC," said Supriyo Dey, Vice President of Business Development at Eoptolink Technology. As the growing demand for computing power drives power consumption and cooling in data centers, server and GPU infrastructure is infiltrating immersive cooling. Immersive cooling is not a new technology, but now may be a good time to break through.


In the past few years, data centers and artificial intelligence/ML optical devices have been driven by cost per bit reduction, which has led to the widespread adoption of unsealed design methods. But these methods are not suitable for immersion cooling environments. "We had to redesign our optical solution from scratch," said Dirk Lutz, an engineer at Eoptolink Technology. We have redesigned the optical engine and solved technical challenges while maintaining cost parity. Now, we are proud to be able to achieve immersive cooling for 800G interconnect applications.


The on-site demonstration of the OSFP 800G DR8 module will be held at Eoptolink booth # 3127 at OFC 2024 in San Diego, California.

Source: Laser Net

Ähnliche Empfehlungen
  • Tongkuai will participate in the laser fusion energy research program

    The US Department of Energy recently allocated $42 million to support the development of laser fusion technology and designated three new research and innovation centers. This strategic investment aims to promote laser based nuclear fusion to play an important role as a clean and sustainable energy source in the future. Trumpf is one of the main participants known for its laser expertise and activ...

    2024-02-01
    Übersetzung anzeigen
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    Übersetzung anzeigen
  • The output power of high power femtosecond laser breaking through the key bottleneck of average power can reach the order of 100 watts

    High energy, high average power femtosecond laser due to the attosecond high order harmonic generation, precision processing and manufacturing, biomedical and national defense and other fields of extensive application needs, is the forefront of ultrafast super laser technology research in the past decade.Especially fiber laser due to stable and reliable operation characteristics, compact structure...

    2023-09-04
    Übersetzung anzeigen
  • Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

    Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.Composite materials such as carbon fiber reinforced plastics (CFR...

    2024-03-06
    Übersetzung anzeigen
  • Ireland's first biological Brillouin microscope at Trinity College Dublin

    A project at Trinity College Dublin is now hosting Ireland's first BioBrillouin microscope instrument, applying Brillouin spectroscopy to life sciences and medicine.This should in particular enhance the College's research into cellular and tissue mechanics for the study of inflammation, cancer, and developmental biology.Brillouin microscopy offers a route to optical investigation of a biological s...

    07-14
    Übersetzung anzeigen