Deutsch

Fraunhofer IZM launches quantum cascade project to develop modular laser system

25
2025-07-30 11:17:54
Übersetzung anzeigen

Creating new laser systems for use in spectroscopy applications is a challenging and costly endeavor. In order to give even small and medium-sized enterprises access to such innovative technology, the Fraunhofer Institute for Reliability and Microintegration (IZM) co-launched the QuantumCascade project to develop a modular laser system for a range of multispectral analytics.
This week the IZM reported on the project, which ran from 2022-2025. IZM stated, “Infrared spectroscopy has many uses in a vast range of applications, from geosciences to medical technology or even waste management and recycling. Spectroscopic analytics have become far more precise over the last two decades, and far more complex over the same period.

 



Demonstration unit created in the QuantumCascade project


“Current devices use light at different wavelengths for a range of multispectral tests, but they have become bulky and stationary. Putting their capabilities into the original handheld form factor would allow sophisticated analytics out in the field, but designing and miniaturizing the technology to do this is a resource and know-how-intensive feat,” the statement added.

‘Versatile and reliable source for spectroscopy’

This is where the QuantumCascade project enters the picture. Successful development of a modular and powerful laser system, integrated on a glass board, would bring down the R&D effort needed to develop innovative devices and give makers access to a versatile and reliable light source for spectroscopy.

Quantum cascade lasers (QCLs) operate at wavelengths between 2 µm and 15 µm, in the medium infrared (MIR) range. QuantumCascade combines up to three QCLs that can be programmed to emit pulses as short as 5 ns, which are particularly crucial for spectroscopic analytics with organic substances.

Alongside the lasers themselves, the design includes embedded laser drivers that were developed in partnership with Laser Electronics LE GmbH, and integrated optical beamforming using aspherical optics and coupling to special MIR fibers. The novel design places each QCL inside its own cavity in the glass. The temperature in each can be stabilized separately, which means that the lasers can be operated each at the right temperature and, by implication, the right wavelength.

The electronic drivers and control circuits in the design are mounted by industrial soldering processes on a thin-film metallized glass board. Selective laser etching is used to structure this glass board with µm accuracy – so that optical components can be mounted directly. The solution is highly integrated, which makes it possible to encapsulate the entire system – for operation in harsh environments or to get cleaned for use in medical applications.

When working on the laser system, the researchers could draw on the insights won in the prior PhotMan project’s work on a versatile fiber-optical sensor system. QuantumCascade is the next step in the evolution of a thin-glass platform developed at IZM that integrates and couples optical and electronic components efficiently.

Source: optics.org

Ähnliche Empfehlungen
  • Magdalena Ridge expands the capacity of optical interferometers

    The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple...

    2024-01-05
    Übersetzung anzeigen
  • Zeiss, a century old optical giant, has established the Optoelectronic Optics Division

    Recently, Carl Zeiss announced on its official website that it plans to launch a new strategic business unit, ZEISS Photonics&Optics, on October 1, 2024, with the aim of providing excellent optoelectronic and optical products and solutions to global customers. It is reported that starting from the 2024/25 fiscal year, Zeiss Group will establish a new business unit focused on optoelectronics...

    2024-05-28
    Übersetzung anzeigen
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    Übersetzung anzeigen
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    Übersetzung anzeigen
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    Übersetzung anzeigen