Deutsch

Micro devices output powerful lasers at room temperature, reducing power consumption by 7 times

426
2024-05-29 14:40:30
Übersetzung anzeigen

Recently, researchers at the Rensselaer Polytechnic Institute in the United States have invented a miniature device thinner than human hair, which can help scientists explore the essence of light and matter and unravel the mysteries of the quantum field. The most important advantage of this technology is that it can work at room temperature without the need for complex infrastructure.

 


The researchers stated that "material selection is the most important, and we were the first to choose exciton material CsPbCl3 for this application." CsPbCl3 is a perovskite material that researchers use to manufacture photonic topological insulators (PTIs).

Although classical physics helps us understand the world, technological progress can be attributed to quantum mechanics. The understanding of quantum mechanics, from light-emitting diodes (LEDs) to lasers, transistors, and even electron microscopes, has driven the leapfrog development of modern technology.

However, there are still many unknowns waiting to be explored in the quantum field. Global researchers are using cutting-edge equipment to study the behavior of atomic particles, in order to further enhance their understanding. Meanwhile, Wei Bao, assistant professor of Materials Science and Engineering at RPI, and his team have adopted a unique research path.

What is a photonic topological insulator?
PTI is a material that can guide photons in light to specially designed interfaces inside the material, while also preventing light from scattering through it. This characteristic enables multiple photons within the material to maintain coherence and exhibit the behavior of a single photon.

RPI researchers have utilized this characteristic of materials to transform insulators into a simulated material, creating a miniature laboratory for studying the quantum properties of photons.

In the process of equipment manufacturing, researchers adopted technologies similar to those used in microchip manufacturing. They stack different materials layer by layer, and each molecule is carefully arranged to construct a structure with specific properties.

Firstly, the research team utilized cesium, lead, and chlorine to manufacture ultra-thin perovskite plates. Next, they etched specific patterns on a polymer. Then, the crystal plate and polymer are sandwiched between thin sheets of different oxide materials, resulting in a micro device with a thickness of about 2 microns, a length of 100 microns, and a diameter smaller than that of ordinary human hair.

How does this device work?
When the research team used lasers on the device, a glowing triangular pattern appeared on the material interface. This mode originates from the topological characteristics of the laser and is determined by the device design.

The significant advantage of this device lies in its ability to operate at room temperature. CsPbCl3 has a stable exciton binding energy of up to 64 meV, far exceeding the thermal fluctuation of 25.8 meV at room temperature.

The research team stated in a statement, "In the past, researchers could only supercool substances in vacuum, which required large and expensive equipment. However, many laboratories do not have such conditions. Therefore, our equipment will allow more researchers to conduct basic physics research in the laboratory."

In addition, the device also helps to develop lasers that require lower energy for operation. The threshold of our strongly coupled topologically polarized laser at room temperature (15.2 μ J cm-2) is much lower than the threshold of the low-temperature III-V InGaAs weakly coupled system (~106 μ J cm-2), which is approximately 7 times lower.

Source: OFweek

Ähnliche Empfehlungen
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    Übersetzung anzeigen
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    Übersetzung anzeigen
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Übersetzung anzeigen
  • Nanjing University of Science and Technology has made new progress in the field of programmable lensless holographic cameras

    Recently, Professor Chen Qian and Professor Zuo Chao's research group from the School of Electronic Engineering and Optoelectronic Technology at Nanjing University of Science and Technology proposed a minimalist optical imaging method based on programmable masks - programmable Fresnel zone aperture lensless imaging technology. The related achievement, titled "Lensless Imaging with a Programmable F...

    04-14
    Übersetzung anzeigen
  • Shanghai Optical and Mechanical Institute has made progress in ultra-low threshold Rydberg state single mode polariton lasers based on symmetric engineering

    Recently, the research team of Dong Hongxing and Zhang Long from the Research Center of Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, in cooperation with Huazhong University of Science and Technology, reported a new mechanism for generating dynamically tunable single-mode lasers from exciton polaritons with ultra-low thresholds,...

    2023-10-12
    Übersetzung anzeigen