Deutsch

A new method of generating laser without the need for mirrors

71
2025-10-30 10:34:50
Übersetzung anzeigen

A new laser generation method: a laser without a reflector. This study, conducted by a team of physicists from the University of Innsbruck and Harvard University, shows that quantum emitters with spacing smaller than the wavelength can achieve constructive synchronization of photon emission, resulting in bright and extremely narrow bandwidth beams, even without any optical resonant cavities.

The achievement is described in Physical Review Letters; the work was financially supported by the Austrian Science Fund (FWF) and the European Union, among others.

In conventional lasers, mirrors are essential to bounce light back and forth, stimulating coherent emission from excited atoms or molecules, and thus light amplification.

But in the new “mirrorless” concept, the atoms interact directly through their own electromagnetic dipole fields given that interatomic spacing is smaller than the emitted light’s wavelength. When the system is pumped with enough energy, these interactions cause the emitters to lock together and radiate collectively—a phenomenon called superradiant emission.

 


Passive emitters can significantly enhance the emission of light


‘Highly directional and spectrally pure’

The team led by Helmut Ritsch found that this collective emission generates light that is both highly directional and spectrally pure, with a single narrow spectral line, in cases where only a fraction of emitters are excited by incoherent light and the rest of atoms remain unpumped.Since this passive emitter fraction is not broadened by the external light or power broadening, it effectively acts as an optical resonator for the active emitters, in analogy with a conventional laser where the optical resonator and the gain medium are separate physical entities.

“The atoms synchronize their emission and above a certain threshold start to shine light collectively or in unison with each other,” said Anna Bychek, a postdoc from the Department of Theoretical Physics at the University of Innsbruck. “There are still many questions to be studied in future work, but it is clear that atoms build their own feedback mechanism and frequency selection via dipole-dipole interaction in free space.”

Beyond its conceptual significance, this discovery points to a new class of ultra-compact light sources for nanophotonics and precision measurements. Because the emission frequency is determined primarily by the atoms themselves, such systems could provide exceptionally stable optical references for quantum sensors, clocks, or on-chip devices.

The research combines the theory of light-matter interactions with advanced numerical methods to explore how large atomic ensembles behave collectively and emit coherent radiation. The results suggest that with ongoing progress in the field, mirrorless lasing could soon move from theoretical prediction to experimental realization.

Source: optics.org

Ähnliche Empfehlungen
  • Bitsensing, a South Korean LiDAR solution provider, successfully raised 180 million yuan in funding

    Recently, Bitsensing, a leading provider of advanced radar solutions in South Korea, announced the successful completion of Series B financing, with a financing amount of up to $25 million (approximately RMB 181.6 million).This major investment is led by a series of well-known venture capital firms and strategic investors, which not only demonstrates Bitsensing's leading position in the radar tech...

    2024-06-27
    Übersetzung anzeigen
  • Shanghai Institute of Optics and Mechanics proposes a new solution for quartz glass as a visible light laser material

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on rare earth ions Dy3+doped quartz glass as a yellow laser material, and the relevant research results were published in the Journal of the American Ceramic Society as "Effect o...

    2024-06-05
    Übersetzung anzeigen
  • Laser Photonics Corporation receives MF-1020 order

    Recently, Laser Photonics Corporation (LPC) announced that it has partnered with Foon Technologies to receive its second order for the DefenseTech MRL (MF-1020) handheld cleaning system, which was facilitated by a distributor.The DTMF-1020 air-cooled handheld pulse laser cleaning equipment adopts dual axis technology, simplifying the maintenance process. The system will be used by the Navy Command...

    02-27
    Übersetzung anzeigen
  • Innovating Photonics: Lithium Tantalate Provides Power for the Next Generation of Optoelectronic Circuits

    The new photonic integrated circuit technology based on lithium tantalate has improved cost efficiency and scalability, making significant progress in the fields of optical communication and computing.The rapid development of photonic integrated circuits (PICs) has revolutionized optical communication and computing systems, combining multiple optical devices and functions on a single chip.For deca...

    2024-05-14
    Übersetzung anzeigen
  • Improved spectrometer color filter array for software calibration without the need for laser

    Hackaday will launch cool projects that may stimulate others to expand and enhance it, and even move in a completely new direction. This is the way the most advanced technology continues to evolve. This DIY spectrometer project is a great example of this spirit. It comes from Michael Prathofer, who was inspired by Les Wright's PySpectrometer, a simple device pieced together by a pocket spectrom...

    2024-05-28
    Übersetzung anzeigen