Deutsch

Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

217
2024-04-18 17:04:51
Übersetzung anzeigen

Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.
The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.

Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producing metal powders internally for additive manufacturing.
In the past four years, the company has expanded its business scale and strengthened its team. Therefore, it attempts to centralize its data to prevent costly errors, such as sending incorrect designs into production.

"That's why we chose Siemens Xcelerator for digitization to simplify the constantly growing data in our design and production technology processes," said Amazemet CEO Ł Ukasz Ż Rodowski explained. The Amazemet engineering team is utilizing Siemens Xcelerator software to help push its products to the market and further expand the company's operational scale.

"The Siemens Xcelerator product portfolio has improved our efficiency, providing a single platform for managing documents, product development, and manufacturing processes. Its scalability supports our continuous growth, simplifies document management, accelerates design, and eliminates scalability barriers." Ż Rodowski added.

Amazemet adopts Siemens Xcelerator
Amazement is using Siemens NX software and Teamcenter X software, both of which are part of the Xcelerator product portfolio. These platforms are used to assist in the development of post-processing technologies, including inFurner high vacuum furnaces.

This furnace can be heated to 1600 ℃ and is designed to provide reliable heat treatment for 3D printed metal parts. This is an important step in metal additive manufacturing, which is crucial for improving mechanical properties such as hardness, strength, and fatigue resistance.

Siemens NX is a computer-aided design/manufacturing (CAD/CAM) software designed for the design, analysis, and manufacturing processes in 3D printing. NX CAD allows designers to create 3D models, analyze product design feasibility, and share data to accelerate production cycles. The platform also enables users to generate lattice structures, perform construction simulations, and prepare 3D printed parts.

Ż Rodowski stated that NX software significantly shortens product development time. It also improves the stability and reliability of rePowder, and the company's ultrasonic atomizer can produce powdered metal raw materials from any alloy material.

Amazemet also utilizes Teamcenter X to implement cloud based product lifecycle management and collaboration tools. According to reports, this ensures that all files and service documents of the company can be accessed anytime, anywhere.

Mariusz Zabielski, Vice President and Regional Manager of Siemens Digital Industrial Software for Poland and the Czech Republic, believes that accessibility challenges still need to be overcome before additive manufacturing becomes more widely adopted.

"I am pleased to see a Polish company pushing new technologies to the market and enhancing Poland's position as a truly innovative melting pot in the field of additive manufacturing," Zabielski said.

"Amazemet is another perfect example of how innovators and pioneers in various industries adopt the Siemens Xcelerator industry software portfolio to digitally transform and expand their business, and fulfill their commitment to widely adopting metal additive manufacturing."

Using software to accelerate metal 3D printing
Siemens Xcelerator suite is not the only software aimed at optimizing metal 3D printing. At the Additive Manufacturing User Group (AMUG) 2024 meeting held in Chicago last month, Belgian 3D printing company Materialise launched its e-Stage for Metal+software.

This product uses physics based modeling to simplify data and prepare for laser powder bed melting (LPBF) 3D printing, and automatically generates support structures.

The e-stage of Metal+aims to improve the accessibility of metal additive manufacturing and predict areas that are prone to deformation during the 3D printing process. Then generate support to alleviate this situation, prevent 3D printing failures, and simplify post-processing. According to Materialise, this shortens the learning curve of metal 3D printing and promotes its adoption in industrial manufacturing applications.

Last year, 1000 Kelvin, a software company headquartered in Berlin, announced the full commercialization of AMAIZE AI driver software for metal 3D printing. AMAIZE uses artificial intelligence (AI) to create 3D printing formulas, ensuring accurate 3D printing with just one attempt.
After uploading the file to the AMAIZE cloud, the software will analyze the parts and automatically solve any thermal mechanical problems by optimizing scanning strategies and process parameters. This eliminates the need for expensive component simulation software and minimizes the number of physical iterations.

Source: Laser Net

Ähnliche Empfehlungen
  • Mei Xin Sheng: The development of high-precision polarized light crown products has been completed

    On September 5, when Mei Xin Sheng held an analyst meeting, it said that the company has launched a fully integrated ultra-low power optical proximity detection sensor and a three-in-one ambient light and proximity detection sensor with ultra-high sensitivity, which have entered mass production.The research and development of high-precision polarized light crown products has been completed, the fe...

    2023-09-05
    Übersetzung anzeigen
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    Übersetzung anzeigen
  • Overview: High throughput preparation of alloy composition design in additive manufacturing

    Researchers from the New Materials Technology Research Institute of Beijing University of Science and Technology and the Beijing Modern Transportation Metal Materials and Processing Laboratory reported a review of high-throughput preparation of alloy composition design in additive manufacturing. The relevant research is titled "High throughput preparation for alloy composition design in additive m...

    2024-07-08
    Übersetzung anzeigen
  • Graphene terahertz absorber and graded plasma metamaterials

    Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical...

    2024-05-20
    Übersetzung anzeigen
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    Übersetzung anzeigen