Deutsch

Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

922
2024-04-18 17:04:51
Übersetzung anzeigen

Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.
The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.

Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producing metal powders internally for additive manufacturing.
In the past four years, the company has expanded its business scale and strengthened its team. Therefore, it attempts to centralize its data to prevent costly errors, such as sending incorrect designs into production.

"That's why we chose Siemens Xcelerator for digitization to simplify the constantly growing data in our design and production technology processes," said Amazemet CEO Ł Ukasz Ż Rodowski explained. The Amazemet engineering team is utilizing Siemens Xcelerator software to help push its products to the market and further expand the company's operational scale.

"The Siemens Xcelerator product portfolio has improved our efficiency, providing a single platform for managing documents, product development, and manufacturing processes. Its scalability supports our continuous growth, simplifies document management, accelerates design, and eliminates scalability barriers." Ż Rodowski added.

Amazemet adopts Siemens Xcelerator
Amazement is using Siemens NX software and Teamcenter X software, both of which are part of the Xcelerator product portfolio. These platforms are used to assist in the development of post-processing technologies, including inFurner high vacuum furnaces.

This furnace can be heated to 1600 ℃ and is designed to provide reliable heat treatment for 3D printed metal parts. This is an important step in metal additive manufacturing, which is crucial for improving mechanical properties such as hardness, strength, and fatigue resistance.

Siemens NX is a computer-aided design/manufacturing (CAD/CAM) software designed for the design, analysis, and manufacturing processes in 3D printing. NX CAD allows designers to create 3D models, analyze product design feasibility, and share data to accelerate production cycles. The platform also enables users to generate lattice structures, perform construction simulations, and prepare 3D printed parts.

Ż Rodowski stated that NX software significantly shortens product development time. It also improves the stability and reliability of rePowder, and the company's ultrasonic atomizer can produce powdered metal raw materials from any alloy material.

Amazemet also utilizes Teamcenter X to implement cloud based product lifecycle management and collaboration tools. According to reports, this ensures that all files and service documents of the company can be accessed anytime, anywhere.

Mariusz Zabielski, Vice President and Regional Manager of Siemens Digital Industrial Software for Poland and the Czech Republic, believes that accessibility challenges still need to be overcome before additive manufacturing becomes more widely adopted.

"I am pleased to see a Polish company pushing new technologies to the market and enhancing Poland's position as a truly innovative melting pot in the field of additive manufacturing," Zabielski said.

"Amazemet is another perfect example of how innovators and pioneers in various industries adopt the Siemens Xcelerator industry software portfolio to digitally transform and expand their business, and fulfill their commitment to widely adopting metal additive manufacturing."

Using software to accelerate metal 3D printing
Siemens Xcelerator suite is not the only software aimed at optimizing metal 3D printing. At the Additive Manufacturing User Group (AMUG) 2024 meeting held in Chicago last month, Belgian 3D printing company Materialise launched its e-Stage for Metal+software.

This product uses physics based modeling to simplify data and prepare for laser powder bed melting (LPBF) 3D printing, and automatically generates support structures.

The e-stage of Metal+aims to improve the accessibility of metal additive manufacturing and predict areas that are prone to deformation during the 3D printing process. Then generate support to alleviate this situation, prevent 3D printing failures, and simplify post-processing. According to Materialise, this shortens the learning curve of metal 3D printing and promotes its adoption in industrial manufacturing applications.

Last year, 1000 Kelvin, a software company headquartered in Berlin, announced the full commercialization of AMAIZE AI driver software for metal 3D printing. AMAIZE uses artificial intelligence (AI) to create 3D printing formulas, ensuring accurate 3D printing with just one attempt.
After uploading the file to the AMAIZE cloud, the software will analyze the parts and automatically solve any thermal mechanical problems by optimizing scanning strategies and process parameters. This eliminates the need for expensive component simulation software and minimizes the number of physical iterations.

Source: Laser Net

Ähnliche Empfehlungen
  • The United States promotes the development of next-generation EUV lithography technology

    LLNL has long been a pioneer in the development of EUV lithography technology.A laboratory located in California will lay the foundation for the next development of extreme ultraviolet (EUV) lithography technology. The project is led by Lawrence Livermore National Laboratory (LLNL) and aims to promote the next development of EUV lithography technology, centered around the laboratory's developed dr...

    01-06
    Übersetzung anzeigen
  • The ECSTATIC fiber optic project worth 5.1 million euros aims to prevent bridge collapse

    A new European research project is exploring whether the same fibre-optic cables that carry our internet could also serve as real-time sensors for hidden damage in infrastructure, including bridges, railways, tunnels and energy pipelines. The €5.1 million ECSTATIC project, coordinated by Aston University in the UK, is trialling this breakthrough approach in a major UK city, using a heavily-used...

    08-18
    Übersetzung anzeigen
  • LOTMAXX Announces the Launch of a Multifunctional 3D Printer with Laser Cutting Function

    LOTMAXX has announced the launch of the ET model, a new type of 3D printer that can also be used as a laser cutting machine. According to the manufacturer, the core component is a fast direct extruder with a printing speed of up to 500 millimeters per second.LOTMAXX ET features an all metal casing with a printing volume of 250 x 250 x 265 mm. According to the announcement, as a special feature, th...

    2023-11-09
    Übersetzung anzeigen
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    Übersetzung anzeigen
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Übersetzung anzeigen