Deutsch

Optimizing the phase focusing of laser accelerators

676
2024-02-29 14:45:59
Übersetzung anzeigen

With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.

Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electron beams. The study was published in the journal Physical Review Letters.

The high-energy particle beams generated by accelerators enable physicists to study material properties, create targeted probes for medical applications, and determine the fundamental components of the matter that make up the universe. Some of the earliest high-energy particle accelerators were developed in the 1930s and were small enough to be placed on a desktop.

However, higher particle energy is needed to study more complex physics, which means scientists must build larger systems. The original linear accelerator tunnel of the SLAC National Accelerator Laboratory on Stanford University campus was put into use in 1966 and is nearly 2 miles long.

Professor Olav Solgaard, senior author of the paper, Edward L. Ginzton Laboratory Director, and Professor Robert L. and Audrey S. Hancock from the School of Engineering, stated that this vision is becoming increasingly feasible due to advancements in nanoscale manufacturing and laser technology. Traditional RF accelerators consist of radio waves pumped into copper cavities, increasing the energy of particles.
Due to the possibility of metal being heated by these pulses, the cavity must operate at a lower energy and pulse rate to dissipate heat and prevent melting.

However, glass and silicon structures can be stronger and smaller because they can withstand higher energy laser pulses without overheating. About ten years ago, researchers at Stanford University began conducting experiments on the nanoscale structures of these materials. In 2013, a group led by Robert Bayer, Honorary Professor William R. Kennan, and co authors of the paper demonstrated that electrons can be successfully accelerated through tiny glass accelerators using pulsed infrared light.

Due to these achievements, the Gordon and Betty Moore Foundation accepted the project as part of a global collaboration on chip accelerators, aimed at creating a shoe box sized giant electron volt accelerator.

However, the initial "chip accelerator" still had issues. According to Broaddus, the electrons inside are like cars on narrow roads without steering wheels - they can easily hit walls and accelerate extremely quickly.

The research team at Stanford University has now successfully demonstrated their ability to control electrons at the nanoscale. To achieve this goal, they created a silicon structure with submicron channels in a vacuum system. They put electrons into one end and use a shaped laser pulse that generates kinetic energy to illuminate the structure from both sides. By periodically flipping between the focusing and defocusing characteristics of the laser field, electrons are prevented from deviating from their orbits.

Electrons are affected by this sequence of acceleration, defocusing, and focusing, exceeding nearly one millimeter. Although it may not seem much, the energy of these charged particles significantly increases, by 23.7 kiloelectron volts, or about 25%, compared to their initial energy. The acceleration speed of the team's prototype micro accelerator is comparable to that of traditional copper accelerators, and Broaddus stated that it can achieve higher acceleration speeds.

Although this is a big step in the right direction, more work is needed before applying these micro accelerators to business, healthcare, and research. The team can only manipulate electrons in two-dimensional space; Three dimensional electron constraints are needed to extend the accelerator for a sufficient amount of time to achieve higher energy gain.

Broaddus mentioned that a sister research group at Friedrich Alexander University in Erlangen, Germany recently demonstrated a similar device that uses a single laser and starts at significantly lower initial energy levels. He stated that FAU devices and Stanford devices will ultimately form part of the electronic relay competition he described.

Three people will participate in the upcoming relay race. After receiving the initial booster from the FAU device, low-energy electrons can be fed into devices similar to those being created by Broaddus. For electrons, the final step will be an accelerator made of glass, similar to the accelerator created by Bayer. Due to glass being more resistant to laser radiation than silicon, accelerators can excite more electrons and accelerate them to the speed of light.

Solgard believes that ultimately, like larger accelerators, these tiny accelerators will contribute to high-energy physics and explore the fundamental substances that make up the universe. Although "we still have a long way to go," Solgard remained optimistic and added, "we have taken the first few steps.".

Source: Laser Net


Ähnliche Empfehlungen
  • BWT's 3000W product speed surges by 200%

    In the era of speed and precision, the field of thin and medium plate processing is experiencing a revolutionary transformation. Today, let's explore a remarkably fast tool -- BWT’s Lightning 3000W@34μm fiber laser, and witness its impressive performance.On busy production lines, this product is completing complex cutting tasks at astonishing speeds. Its high-speed, high-efficiency, and high-quali...

    05-12
    Übersetzung anzeigen
  • Researchers enhance the signal of perovskite nanosheets

    In the field of optoelectronics, researchers from Busan National University in South Korea and the University of Oxford in the UK have successfully improved the signal amplification ability of CsPbBr3 perovskite nanosheets through innovative patterned waveguide methods, bringing new possibilities for the future of optoelectronics. This breakthrough not only has potential applications in fields suc...

    2024-02-22
    Übersetzung anzeigen
  • Lidar manufacturer RAYZ has completed a round A financing of nearly 100 million yuan

    Recently, RAYZ, a leading research and production company for high-performance LiDAR, announced the successful completion of the A-round financing. This round of financing was led by SMIC Juyuan, and well-known institutions such as Juntong Capital, Feitu Capital, Qiandao Investment, and Qiyu Chuangying also participated in this round of financing. The new round of financing will be used for the re...

    2023-10-20
    Übersetzung anzeigen
  • The Linac Coherent Light Source II X-ray Laser in the United States has completed over a decade of upgrading and emitted the first X-ray with a record breaking brightness

    According to reports, the Linac Coherent Light Source II (LCLS-II) X-ray laser at the Stanford SLAC National Accelerator Laboratory in the United States has just completed an upgrade that took more than a decade. After a facelift, it has become the world's brightest X-ray facility and emitted the first record breaking X-ray, allowing researchers to record the behavior of atoms and molecules in bio...

    2023-09-20
    Übersetzung anzeigen
  • American FMCW LiDAR listed company Aeva receives $50 million investment

    Recently, American FMCW LiDAR listed company Aeva announced a strategic partnership with a technology subsidiary of a Fortune Global 500 company to jointly introduce Aeva's fourth generation 4D LiDAR into emerging industrial and consumer markets.According to the agreement, the tech giant will provide a strategic investment of approximately $50 million to Aeva through subscription of Aeva common st...

    05-22
    Übersetzung anzeigen